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1. Introduction 

The inverse Weibull distribution is another life time probability distribution which can be used 

in the reliability engineering discipline. The inverse Weibull distribution can be used to model a variety 

of failure characteristics such as infant mortality, useful life and wear-out periods. It can also be used to 

determine the cost effectiveness, maintenance periods of reliability centered maintenance activities and 

applications in medicine, reliability and ecology. The inverse Weibull distribution provides a good fit to 

several data such as the times to breakdown of an insulating fluid, subject to the action of a constant 

tension, see Nelson (1982).The inverse Weibull distribution has initiated a large volume of research .For 

example, Calabria and Pulcini (1990) have discussed the maximum likelihood and least square 

estimations of its parameters, and Calabria and Pulcini (1994) have considered Bayes 2-sample 
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prediction of the distribution. Keller (1985) obtained the inverse Weibull model by investigating failures 

of mechanical components subject to degradation. The two parameter exponentiated inverted Weibull 

distribution (EIWD) has been proposed by Flaih et al (2012). The two parameter inverse Weibull 

distribution has the following density function 

        0,exp),;(   xxxF                                                             (1) 

where θ>0 is the scale parameter and β>0 is the shape parameter. The density function corresponding to 

(1) is 

       )2(0,,0;)( )1( 
 
 xexxf x  

The aim of this paper is to propose the different methods of estimation of the parameters of the 

inverse Weibull distribution. In the next section, we obtain the MLE of the scale parameter   in inverse 

Weibull when  is known. We also discuss the procedures to obtain the Bayes estimators for the 

unknown parameters using gamma prior, and Quasi prior under LINEX loss function and quadratic loss 

function. 

2. Reliability Analysis 

The reliability function R(t), which is the probability of an item not failing prior to sometime t, 

is defined by R(t) = 1 - F(t). The reliability function of IWD is given by 

       )(1),,(
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The other characteristic of interest of a random variable is the hazard rate function defined by  
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which is an important quantity characterizing life phenomenon. It can be loosely interpreted as the 

conditional probability of failure, given it has survived to time t. The hazard rate function for inverse 

random variable is given by 
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3. Estimation of the Scale Parameter  

3.1. Maximum Likelihood Estimator 

If nxxx ,...,, 21 is a random sample from exponentiated inverse Weibull distribution given by (2), 

then the likelihood function becomes: 
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As parameter  is known, the MLE of  which maximize the log likelihood must satisfy the normal 

equation given by: 
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3.2. Bayes Estimator 

We now derive the Bayes estimator of the parameter   in IWD when the parameter   is known. 

We consider two different priors and two different loss functions. 

(a)Quasi Prior: The first prior which we use is the Quasi prior. When there is no information about the 

distribution parameter, one may use Quasi prior as given by 

    
0,0;

1
)(1  d

d



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The quasi prior leads to diffuse prior when d=0 and to a non informative prior for a case when       d=1.    

(b) Gamma Prior: The second prior which we use is the Gamma prior. It is assumed that the scale 

parameter has a gamma prior distribution with shape and scale parameters c and d respectively, when it 

has the following pdf 
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 (i) LINEX loss function: The LINEX loss function is an asymmetric loss function which was                                                 

introduced by Klebanov (1972) and used by Varian (1975) in the context of real estate assessment. 

Zellner (1986) and Varian (1975) have discussed its behavior and various applications. 

     The LINEX loss function is defined as 

 

        1ˆˆexp)ˆ,(   bbl  

 

Where 0b  determines the shape of the loss function. 

(ii)Quadratic loss function: The use of quadratic loss function is common, for example when using 

least square techniques. It is often more mathematically tractable than other loss functions because of 

the properties of variances, as well as being symmetric: an error above the target causes the same loss as 

the same magnitude of error below the target. 
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If the target is t, then a quadratic loss function is 

 

    
2)()( xtcx   

For some constant c; the value of constant makes no difference to a decision and can be ignored by 

setting it equal to 1. 

      The Quadratic loss function is defined as 
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where̂  is the estimate of  . 

3.3. Bayes Estimator under )(1   

Under )(1  , using (2), the posterior distribution is given by 
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where k is independent of   

 

and  















0 1

1 exp 


dxk
n

i

i

dn
 

  

1

1

1 )1(





















dn

n

i

ix

dn
k



 

 )1(

1

1






















dn

x

k

dn
n

i

i



 

Thus posterior distribution is given by 
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3.3.1. Estimator under LINEX loss function 

 

By using LINEX loss function      1ˆˆexp)ˆ,(   bbl , the risk function is given by 
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 Now solving 0
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










R
, we obtain the Baye’s estimator as 
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3.3.2. Estimator under Quadratic loss function 

 

By using Quadratic loss function
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3.4. Bayes estimator under )(2   

Under )(2  , using (2), the posterior distribution is given by  
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3.4.1. Estimator under LINEX loss function 

By using LINEX loss function      1ˆˆexp)ˆ,(   bbL , the risk function is given by         
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3.4.2. Estimator under Quadratic loss function 

By using quadratic loss function
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, we obtain the Baye’s estimator as 
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4. Conclusion 

In this article, we have primarily studied the Bayes estimator of the scale parameter of the 

exponentiated Inverse Weibull distribution under Quasi and Gamma priors by assuming two different 

loss functions. 
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