New type of sequence space and matrix transformations

${ }^{1}$ Ab Hamid Ganie, ${ }^{2}$ Neyaz Ahmad Sheikh and ${ }^{3}$ Tanweer Jalal
 ${ }^{1,2}$ Department of Mathematics, National Institute of Technology Srinagar-190006, India

${ }^{3}$ Department of Mathematics, Yanbu Industrial College, Kingdom of Saudi Arabia
email: ashamidg@rediffmail.com

Abstract

The main purpose of the present paper is to determine the necessary and sufficient conditions on a matrix sequence $\mathcal{A}=\left(A_{v}\right)$ in order that \mathcal{A} belongs to the matrix class $(b v(u, p): C)$ where $0<p \leq \infty$.

2000 Mathematical Cubject Classification : 46A45, 46B45, 40C05.

Keywords and Phrases : Matrix sequences, double sequence and matrix sequence transformation.

1. Preliminaries, Background and Notation

By ω, we denote the space of all real or complex valued sequences. Any vector subspace of ω is called a sequence space. We write l_{∞}, c and c_{0} for the spaces of all bounded, convergent and null sequences, respectively. Also by $b s, c s, l_{1}$ and l_{p}, we denote the spaces of all bunded, convergent, absolutely and p-absolutely convergent series, respectively. We also denote by C and C_{0}, the spaces of all convergent and null double sequences, respectively.

For the sequence spaces X and Y define the set $S(X: Y)$ by

$$
\begin{equation*}
S(X: Y)=\left\{z=\left(z_{k}\right) \in \omega: x z=\left(x_{k} z_{k}\right) \in Y \forall x \in X\right\} . \tag{1}
\end{equation*}
$$

With the notation of (1), $\alpha-, \beta$ - and γ-duals of a sequence space X, which are respectively denoted by X^{α}, X^{β} and X^{γ}, are defined by

$$
X^{\alpha}=S\left(X: l_{1}\right), X^{\beta}=S(X: c s) \text { and } X^{\gamma}=S(X: b s)
$$

Let X and Y be two sequence spaces and let $A=\left(a_{n k}\right)$ be an infinite matrix of real or complex numbers $a_{n k}$, where $n, k \in \mathbb{N}$. Then, the matrix A defines the A-transformation from X into Y, if for every sequence $x=\left(x_{k}\right) \in X$ the sequence $A x=\left((A x)_{n}\right)$, the A-transform of x exists and is in Y; where $(A x)_{n}=\sum_{k} a_{n k} x_{k}$. A sequence x is said to be A-summable to l if $A x$ converges to l if $A x$-converges which is called as the A-limit of x. For a sequence space X, the matrix domain X_{A} of an infinite matrix A is defined as

$$
\begin{equation*}
X_{A}=\left\{x=\left(x_{k}\right) \in \omega: A x \in X\right\} . \tag{2}
\end{equation*}
$$

The approach of constructing a new sequence space by means of a particular method have been studied by several authors viz., (see, $[1,3-9]$). The idea of \mathcal{A}-summability , was introduced by H.T. Bell in his doctoral work [2]. For $v=1,2, \ldots$, let $A_{v}=\left(a_{n k}(v)\right)$ be an infinite matrix of real numbers and let \mathcal{A} be a sequence of infinite matrices $\left(A_{v}\right)$ and $X \subset \omega, Y \subset \omega$. Then, the matrix sequence $\mathcal{A}=\left(A_{v}\right)$ define the transformation from X into Y if every sequence $\left(x_{k}\right) \in X$ the double sequence $\mathcal{A} x=\left((\mathcal{A} x)_{n}^{v}\right)_{n, v=0}^{\infty}$, the \mathcal{A}-transform of x exists and is in Y; where $(\mathcal{A} x)_{n}^{v}=\sum_{k} a_{n k}(v) x_{k}$. For simplicity in notation, here and in what follows, the summation without limits runs from 0 to ∞. By $(X: Y)$, we denote the class of all such matrix sequences. A sequence x is said to be \mathcal{A}-summable to L if $(\mathcal{A} x)_{n}^{v}=L$ uniformly in v. We shall write throughout the paper for brevity that

$$
\begin{gathered}
\tilde{a}_{n k}(v)=\sum_{j=k}^{\infty} \frac{a_{n j}(v)}{u_{k}} \\
a(n, k, v)=\sum_{i=1}^{n} a_{i k}(v),
\end{gathered}
$$

for all $n, k, v \in \mathbb{N}$. In [2], although no ordinary limitation method can correspond to almost convergence defined in [7], it is shown that this is possible using matrix sequences.
2. Main Results : The space $b v(u, p)$ of sequences of p-bounded variation was defined and studied by Basár, Altay and Mursaleen[1], where

$$
b v(u, p)=\left\{x=\left(x_{k}\right) \in \omega: \sum_{k}\left|u_{k} \triangle x_{k}\right|^{p}<\infty\right\} \quad, \quad(0<p \leq H<\infty) .
$$

It was proved that $b v(u, p)$ is a $B K$-space which is linearly isomorphic to the space $l(p)$ and the inclusion $b v(u, p) \supset l(p)$ strictly holds. The $\alpha-, \beta-$ and γ-duals of the space $b v(u, p)$ are determined. Define the sequence $y=$ $\left(y_{k}\right)$, which will be frequently used, by the A^{u}-transform of a sequence $x=$ $\left(x_{k}\right)$, i.e., $y_{k}=\left(u_{k} \triangle x_{k}\right), \quad k \in \mathbb{N}$.

We use the following Lemmas in proving the main results.
Lemma 2.1 [1]: The sequence space $b v(u, p)$ is linearly isomorphic to the space $l(p) i, e ., b v(u, p) \cong l(p)$, where $0<p_{k} \leq H<\infty$.

Lemma 2.2 [1]:.Define the sequence $b^{(k)}(u)=\left\{b_{n}^{k}(u)\right\}$ of the elements of the space $b v(u, p)$ for every fixed $k \in \mathbb{N}$ by

$$
b_{n}^{k}(u)=\left\{\begin{array}{lc}
\frac{1}{u_{k}}, & n \geq k, \tag{3}\\
0, & n<k .
\end{array}\right.
$$

Then the sequence $\left\{b_{n}^{k}(u)\right\}$ is a basis for the space $b v(u, p)$ and any $x \in$ $b v(u, p)$ has a unique representation of the form

$$
\begin{equation*}
x=\sum_{k} \lambda_{k}(u) b^{k}(u), \tag{4}
\end{equation*}
$$

where $\lambda_{k}(u)=\left(A^{u} x\right)_{k}$ for all $k \in \mathbb{N}$ and $0<p \leq H<\infty$.
Theorem 2.3: Let $1<p<\infty$. Then $\mathcal{A} \in(b v(u, p), C)$ if and only if

$$
\begin{align*}
& \sup _{m, v} \sum_{k}\left|\sum_{j=k}^{m} a_{n j}(v)\right|^{q}<\infty(n \in \mathbb{N}) \tag{5}\\
& \sup _{n, v} \sum_{k}\left|\tilde{a}_{n k}(v)\right|^{q}<\infty \tag{6}\\
& \lim _{n} n \tilde{a}_{n k}(v)=\alpha_{k}(\text { uniformly in } v) . \tag{7}
\end{align*}
$$

Proof : Let $\mathcal{A} \in(b v(u, p), C)$ and $0<p<\infty$. Then $\mathcal{A} x$ exists for every $x \in b v(u, p)$ and this implies that $\left\{a_{n k}(v)\right\} \in b v(u, p)^{\beta}$ for each $n, v \in \mathbb{N}$ which shows the necessity of (5).

Consider the following equation

$$
\begin{aligned}
\sum_{k} a_{n k}(v) x_{k} & =\sum_{k} a_{n k}(v)\left(\sum_{j=0}^{k} \triangle x_{j}\right) \\
& =\sum_{j} \sum_{k=j}^{\infty} a_{n k}(v) \frac{\triangle x_{j}}{u_{j}} u_{j}=\sum_{j} \widetilde{a}_{n k}(v) y_{j} .
\end{aligned}
$$

That is, we have

$$
\begin{equation*}
\sum_{k} a_{n k}(v) x_{k}=\sum_{j} \tilde{a}_{n k}(v) y_{j} . \tag{8}
\end{equation*}
$$

Taking supremum over n, vand applying Holder's inequality we obtain from (8) that

$$
\sup _{n} \sum_{k}\left|a_{n k}(v) x_{k}\right| \leq \sup _{n}\left(\sum_{j}\left|\tilde{a}_{n k}(v)\right|^{q}\right)^{\frac{1}{q}}\left(\sum_{k}\left|y_{k}\right|^{p}\right)^{\frac{1}{p}}<\infty,
$$

there by proving the necessity of (6).
To prove the necessity of (7), consider , for every fixed $k \in \mathbb{N}$, the sequence of the elements of $b v(u, p)$ as

$$
b_{n}^{k}(u)=\left\{\begin{array}{ccc}
\frac{1}{u_{k}} & , \quad n \geq k, \tag{9}\\
0 & , & n<k .
\end{array}\right.
$$

Since the \mathcal{A}-transform of $x \in b v(u, p)$ exists and lies in C by hypothesis, $\mathcal{A} b_{n}^{(k)}=\left\{\tilde{a}_{n k}(v)\right\}$ is also in C for every fixed $k \in \mathbb{N}$, which proves the necessity the (7).

Conversely, suppose that the conditions (5)-(7) holds and $x \in b v(u, p)$. Then $\mathcal{A} x$-exists. We observe for every $m, n \in \mathbb{N}$ that

$$
\sum_{j=0}^{m}\left|\sum_{k=j}^{m} a_{n k}(v) x_{k}\right| \leq \max _{n, v} \sum_{j}\left|\tilde{a}_{n k}(v) y_{j}\right|
$$

which leads us to the following fact, by letting $m, n \rightarrow \infty$ in (7) and using (5), we have

$$
\begin{equation*}
\sum_{j}\left|\sum_{k=j}^{\infty} \alpha_{j}\right|<\infty \tag{10}
\end{equation*}
$$

Hence, $\left(\alpha_{k}\right) \in b v(u, p)$ which implies that the series $\sum_{k} \alpha_{k} x_{k}$ is convergent for every $x \in b v(u, p)$.

Let us now consider the equality obtained from (8) with $a_{n k}(v)-\alpha_{k}$ instead of $a_{n k}(v)$, we see that

$$
\begin{equation*}
\sum_{k}\left[a_{n k}(v)-\alpha_{k}\right] x_{k}=\sum_{k} b_{n k}(v) y_{k} \tag{11}
\end{equation*}
$$

where $\mathcal{B}=\left(b_{n k}(v)\right)$ with $b_{n k}(v)=\sum_{j=k}^{\infty} a_{n k}(v)-\alpha_{k}$ for all $n, k, v \in \mathbb{N}$. Thus, we have at this stage from (9) with $\alpha_{k}=0$ for all $k \in \mathbb{N}$, that the matrix \mathcal{B} belongs to the class $\left(l_{p}: c_{0}\right)$. Thus we see by (11) that

$$
\begin{equation*}
\lim _{n} \sum_{k}\left[a_{n k}(v)-\alpha_{k}\right] x_{k}=0 \tag{12}
\end{equation*}
$$

which means that $\mathcal{A} x \in C$ whenever $x \in b v(u, p)$ and this is what we wished to prove.

Note that for $p=\infty$ the condition for $\mathcal{A} \in(b v(u, p), C)$ are (6), (7) and

$$
\sum_{k}\left|\sum_{j=k}^{m} a_{n j}(v)\right|<\infty
$$

The proof is similar to the above proof.

References

[1] F. Basár, B. Altay and M. Mursaleen, Some generalizations of the space $b v_{p}$ of p-bounded variation sequences, Nonlinear Anal., 68(2)(2008), 273-287.
[2] H. T. Bell, a-Summability Ph.D. thesis, Lehigh University, 1971.
[3] F. M. Khan and M. Riazuddin, Matrix transformation of sequences of bounded variation, Matematigki Vesnik, 3(16)(1979), 287-293.
[4] J. P. King, Almost summable sequences, Proc. Amer Math. Soc., 17(1966), 1219-1225.
[5] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math., 80(1948), 167-167.
[6] M. Mursaleen, Some new invariant matrix methods of summability, Quart. J. Math. Oxford, 34(2)(1983), 77-86.
[7] M. Mursaleen, Some matrix transformations on sequence spaces of invariant means, Hecettepe J. Math. Stat., 38(3)(2009), 259-264.
[8] E. Sava, Matrix transformations of some generalized sequence sp0aces, J.Orissa. Math. Soc., 4(1)(1985), 37-51.
[9] N. A. Sheikh and A. H. Ganie, A new paranormed sequence space and some matrix transformation, Acta Math. Acad. Paedag. Nyiregy.,28 (2012), 4758.

