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Abstract: In this paper, we obtain new exact solutions of some nonlinear partial 

differential equations such as the (1+1)–dimensional travelling regularized long wave 

(TRLW) equation, the (2+1)-dimensional Calogero equation, the (3+1)-dimensional 

Jimbo–Miwa equation, and the variant shallow water wave equations via the Bernoulli sub-

ODE method. 
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1. Introduction 

The nonlinear evolution equations (NLEEs) are widely used as models to describe complex 

physical phenomena in various field of science, particularly in fluid mechanics, solid state physics, 

plasma waves and chemical physics. Nonlinear equations covers also the following subjects: surface 

wave in compressible fluid, hydro magnetic waves in cold plasma, acoustic waves in harmonic crystal, 

ect.. The wide applicability of these equations is the main reason for they have attracted so much 

attention from mathematicians in the last decades. The investigation of the exact solutions of non linear 

partial differential equations (PDEs) plays an important role in the study of non-linear physical 

phenomena. When we want to understand the physical mechanism of phenomena in nature, described 

by non linear PDEs, exact solutions have to be explored. The study of nonlinear PDEs becomes one of 
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the most important topics in mathematical physics. Recently there are many new methods to obtain 

exact solutions of nonlinear PDEs such as, the tanh function method [5, 6, 28], the ( )-expansion 

method [16, 17,19, 27, 29], the extended Jacobi elliptic function method [7, 9], the hyperbolic-sin 

function method [26], the Exp-function method [2, 3, 4, 11, 12, 13, 18, 30, 31], the improved Exp-

function method [8, 21], and the generalized Bernoulli Sub-ODE method [10, 15, 25]. 

      In this paper, we establish new exact solutions of some nonlinear partial differential equations 

(PDEs) of interest such as the (1+1)–dimensional travelling regularized long wave (TRLW) equation 

[20], the (2+1)-dimensional breaking soliton (Calogero) equation [1, 23, 24], the (3+1)-dimensional 

Jimbo–Miwa equation [22], and the variant shallow water wave equations [14] via the Bernoulli sub-

ODE method. 

 

2. Description of the Bernoulli sub-ODE Method 

Consider the following ordinary differential equation (ODE): 

2 ,G G G                                                                                        (2.1) 

where 0, ( )G G   .  

When 0,   Eq. (2. 1) is the type of Bernoulli equation, and we can obtain the solution as          

1
,G

de 








                                                                                      (2. 2) 

where d is an arbitrary constant. 

When 0,  the solution of Eq. (2. 1) is denoted by  

 G de                                                                  (2.3) 

Suppose that a nonlinear equation, say in two or three independent variables , ,x y and t is given by 

( , , , , , , , , ,...) 0,t x y tt xt yt xx yyP u u u u u u u u u                                              (2.4) 

where ( , , )u u x y t  is an unknown function, P  is a polynomial in ( , , )u u x y t and  its various 

partial derivatives, in which the highest order    derivatives and nonlinear terms are involved. 

Step 1. We suppose that 

( , , ) ( ), ( , , )u x y t u x y t                                            (2.5) 

The travelling wave variable (2.5) permits us reducing Eq. (2.4) to an ODE for ( )u u   

( , , ,...) 0P u u u                                                   (2.6) 

Step 2. Suppose that the solution of (2.6) can be expressed by a polynomial in G  as follows: 

1
1( ) ...m m

m mu G G   
                                              (2.7) 
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where ( )G G  satisfies Eq. (2.1), and 1, ,...m m   are constants to be determined later, 0.m  The 

positive integer m  can be determined by considering the homogeneous balance between the highest 

order derivatives and nonlinear terms appearing in (2.6). 

Step 3. Substituting (2.7) into (2.6) and using (2.1), collecting all terms with the same order of 

G together, the left-hand side of Eq. (2.6) is converted into another polynomial in .G  

Equating each coefficient of this polynomial to zero, yields a set of algebraic equations 

for 1, ,..., , .m m     

Step 4. Solving the algebraic equations system in step 3, and by using the solutions of Eq. (2.1), we can 

construct the travelling wave solutions of the nonlinear equation (2.6). 

 

3. Applications 

     In order to illustrate the effectiveness of the Bernoulli sub-ODE method, examples of 

mathematical interests are chosen as follows: 

3.1. The (1+1)–dimensional Travelling Regularized long (TRLW) Wave Equation 

In this section, we consider the TRLW equation 

0t x x xttu u uu u   
                               (3.1.1)

 

Suppose that 

( , ) ( ) ( ),u x t u k x ct                                                                                                (3.1.2) 

where ,k c are constants that to be determined later. 

By Eq. (3.1.2) and Eq. (3.1.1) converted into ODE 

3 2(1 ) 0k c u k u u k c u                                                                        (3.1.3) 

Suppose that the solution of (3.1.3) can be expressed by a polynomial in G  as follows: 

0

( ) ,
m

i
i

i

u a G


                                                                                                                         (3.1.4) 

where ia are constants, and ( )G G  satisfies Eq. (2.1). Balancing the order of uu  and u  in Eq. 

(3.1.3), we obtain 2.m 
 
So Eq. (3.1.4) can be rewritten as 

2
2 1 0 2( ) , 0u a G aG a a                                                                                         (3.1.5) 

where 
0 1,a a  are constants to be determined later. 
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Substituting Eq. (3.1.5) into Eq. (3.1.3) and collecting all the terms with the same power of G 

together, the left-hand side of Eq. (3.1.3) is converted into another polynomial in G. Equating each 

coefficient to zero, yields a set of simultaneous algebraic equations as follows: 

 

1 2 2 2
1 0 1 1 1: ( ) 0G k a a a c k a c a      

 

2 2 2 2 2 2 2
2 1 2 1 2 0 2

2 2 2
1 0 1 1 1

: (2 6 2 2 8 )

( ) 0

G k a c k a c a a a a c k a

k a a a c k a c a

     

  

     

    
 

3 2 2 2 2 2
1 2 1 2

2 2 2 2 2 2
2 1 2 1 2 0 2

: (6 3 30 )

(2 6 2 2 8 ) 0

G k c k a a a c k a

k a c k a c a a a a c k a

    

     

   

     
 

4 2 2 2 2
2 2

2 2 2 2 2
1 2 1 2

: (2 24 )

(6 3 30 ) 0

G k a c k a

k c k a a a c k a

  

    

  

  
 

25 2 2 2
2 2: (2 24 ) 0G k a c k a     

Solving the algebraic equations above, yields: 

 

2 2 2 2 2

0 1

2 2 2

2

1 12
, , , ,

12
,

c k c c k
k k a a

c k
a

  
 

 


 



 
    


 

                  (3.1.6) 

 

Substituting (3.1.6) into (3.1.5), we have 

 

2 2 2 2 2 2 2 2
2

1 12 12
( )

c k c c k c k
u G G

   


  

 
                        (3.1.7) 

 

Combining with Eq. (2.2), we can obtain the traveling wave solutions of Eq. (3.1.1) as follows: 

 

 

            (3.1.8)                                                                 

 

 

2 2 2 2 2 2 2 2

( ) ( ) 2

1 12 12
( , )

( ) ( )k x c t k x c t

c k c c k c k
u x t

d e d e 
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Figure 1: Traveling wave solution of Eq. (3.1.1) for solution 3.1.8 when 1, 2.k c         

 

3.2. The (2+1)-dimensional Breaking Soliton (Calogero) Equation  

 

In this section, we consider the (2+1)–dimensional breaking soliton equation: 

4 2 0xt x xy y xx xxxyu u u u u u                                                                             (3.2.1) 

Suppose that 

( , , ) ( ) ,u x y t u k x L y t                                                                                      (3.2.2) 

where , ,k L  are constants that to be determined later. 

Substitute Eq. (3.2.2) into Eq. (3.2.1) and integrate the result with respect to , Eq. (3.2.1) 

converted into ODE 

2 2 33 ( ) ,k u k L u k L u g                                                                                       (3.2.3) 

where g is the integration constant.  

Suppose that the solution of (3.2.3) can be expressed by a polynomial in G  as follows: 

0

( ) ,
m

i
i

i

u a G


                                                                                                                  (3.2.4) 

where ia are constants, and ( )G G  satisfies Eq. (2.1). Balancing the order of 2( )u  and u  in 

Eq. (3.2.3), we obtain 1.m 
 
S0 Eq. (3.2.4) can be rewritten as 

1 0 1( ) , 0u aG a a                                                                                                  (3.2.5) 

where 
0a  is a constant to be determined later. 

Substituting (3.2.5) into (3.2.3) and collecting all the terms with the same power of G together, 

the left-hand side of  Eq. (3.2.3) is converted into another polynomial in G . Equating each coefficient 

to zero, yields a set of simultaneous algebraic equations as follows: 
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0 : 0G g   

1 3 3
1 1: 0G k L a k a      

2 3 2 2 2 2
1 1 1: 7 3 0G k L a k a k L a        

3 3 2 2 2
1 112 6 0G k L a k L a        

4 2 2 2 3 3
1 1: 3 6 0G k L a k L a     

Solving the algebraic equations above, yields: 

1

2 2
0 0

0, 2 , , , ,

, ,

g a k k k

L L k L a a

    

 

    

   
                                     (3.2.6) 

Substituting Eq. (3.2.6) into Eq. (3.2.5), we have 

0( ) 2u a k G                                                                                             (3.2.7) 

Combining with Eq. (2.2), we can obtain the traveling wave solutions of Eq. (3.2.1) as follows: 

                                    (3.2.8)                                                                                                        

 

 
Figure 2: Traveling wave solution of Eq. 3.2.1 for solution 3.2.8 when an=3, µ=d=2, λ=L=k=1, y=-1  

3.3. The (3+1)-dimensional Jimbo–Miwa Equation  

 

In this section, we consider the (3+1)-dimensional Jimbo–Miwa equation: 

3 3 2 3 0xxxy y xx x xy yt xzu u u u u u u                                                                          (3.3.1) 

Suppose that 

2 2

0

( )

2
( , , )

k x L y k L t

k
u x y t a

d e  
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( , , , ) ( ) ,u x y z t u k x L y m z t                                                                            (3.3.2) 

where , , ,k L m  are constants that to be determined later. 

Substitute Eq. (3.3.2) into Eq. (3.3.1) and integrate the result with respect to  , Eq. (3.3.1) 

converted into ODE 

3 2 23 ( ) (2 3 ) ,k L u k L u L k m u g                                                                    (3.3.3) 

where g is the integration constant.  

Suppose that the solution of (3.3.3) can be expressed by a polynomial in G  as follows: 

0

( ) ,
m

i
i

i

u a G


                                                                                                                          (3.3.4) 

where ia are constants, and ( )G G  satisfies Eq. (2.1) Balancing the order of 2( )u  and u  in Eq. 

(3.33), we obtain 1.m 
 
So Eq. (3.3.4) can be rewritten as 

1 0 1( ) , 0u aG a a                                                                                                      (3.3.5) 

where 0a  is a constant to be determined later. 

Substituting Eq. (3.3.5) into Eq. (3.3.3) and collecting all the terms with the same power of G 

together, the left-hand side of Eq. (3.3.3) is converted into another polynomial in G. Equating each 

coefficient to zero, yields a set of simultaneous algebraic equations as follows: 

0 : 0G g   

1 3 3
1 1 1: 3 2 0G k L a a k m a L        

 

2 2 2 2 3 2
1 1 1 1: 3 3 7 2 0G a k m k L a k L a a L           

 

 

 
4 2 2 2 3 3

1 1: 3 6 0G k L a k L a    

Solving the algebraic equations above, yields: 

 

1

3 2

0 0

0, 2 , , , ,

( 2 )
, , ,

3

g a k k k

L k
L L m a a

k

    

 
 

     


   

                               (3.3.6) 

Substituting Eq. (3.3.6) into Eq. (3.3.5), we have 

0( ) 2u a k G                                                                                                 (3.3.7) 

Combining with Eq. (2.2), we can obtain the traveling wave solutions of Eq. (3.3.1) as follows: 

         

                     (3.3.8) 3 20 ( 2 )
( )

3

2
( , , , )

L k z
k x L y t

k

k
u x y z t a

d e

 
 








  

 



3 3 2 2 2
1 112 6 0G k L a k L a      
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Figure 3: Traveling wave solution of Eq. (3.3.1) for solution 3.3.8 when an=10, µ= λ=k=L=1, d=5, 

ω=2, y=z=-1  

 

3.4. The Variant Shallow Water Wave Equations 

 

In this section, we consider the variant shallow water wave equations 

2 0,t x x xxtu v uu u   

                                                                   (3.4.1) 
2( ) 0t x x xxxv u u v u                                                                                     (3.4.2)

 
Suppose that 

( , ) ( ), ( , ) ( ), ( ),u x t u v x t v k x c t                                             (3.4.3)   

where ,k c are constants that to be determined later. 

By Eq. (3.4.3), Eq. (3.4.1) and Eq. (3.4.2) converted into ODE 

2 3 0,k c u kv k u u k c u                                                                                 (3.4.4) 

2 3 0k c v k u k u v k v u k u                                                                  (3.4.5) 

Suppose that the solution of Eq. (3.4.4) and Eq. (3.4.5) can be expressed by a polynomial in 

G as follows: 

0

( ) ,
m

i
i

i

u a G


                                                                                                    (3.4.6) 

0

( )
m

i
i

i

v b G



                                                                                                      (3.4.7)

 

where ia and ib are constants, and ( )G G  satisfies Eq. (2.1). Balancing the order of uu  and 

u  in Eq. (3.4.4) and the order of vu  and u  in Eq. (3.4.5), we obtain 2.m n 
 
So Eq. (3.4.6) and 

Eq. (3.4.7) can be rewritten respectively as 
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2
2 1 0 2( ) , 0u a G aG a a                                                                                      (3.4.6) 

2
2 1 0 2( ) , 0v b G bG b b    

                                                                                 (3.4.7)
 

where ,i ia b  are constants to be determined later. 

Substituting Eq. (3.4.6) and Eq. (3.4.7) into Eq. (3.4.4) and Eq. (3.4.5), collecting all the terms 

with the same power of G together, the left-hand side of Eq. (3.4.4) and Eq. (3.4.5) are converted into 

other polynomials in G. Equating each coefficient to zero, yields a set of simultaneous algebraic 

equations as follows: 

 For Eq. (3.4.4): 

1 2 2 2
1 1 1 0 1: ( ) 0G k c a b k c a a a         

2 2 22 2 2 2
2 0 2 1 2 1 2

22 2
1 1 1 0 1

: ( 2 2 2 6 8 )

( ) 0

G k c a a a a b k c a k c a

k c a b k c a a a

     

  

      

     
 

2 2 23 2 2
1 1 2 2

2 2 22 2 2
2 0 2 1 2 1 2

: ( 6 3 30 )

( 2 2 2 6 8 ) 0

G k k c a a a k c a

k c a a a a b k c a k c a

     

     

  

       
 

4 22 2 2
2 2

2 2 2 2 2
1 1 2 2

: (2 24 )

( 6 3 30 ) 0

G k a k c a

k k c a a a k c a

  

     

  

  
              

 

25 2 2 2
2 2: (2 24 ) 0G k a k c a     

For Eq. (3.4.5): 

1 2 2 2
1 1 1 1 0 1 0: ( ) 0G k c b k a a a b b a          

22 2 2 2 2
2 1 1 2 0 1 2 2 0 2

2 2 2
1 1 1 1 0 1 0

: (2 2 2 6 2 2 8 )

( ) 0

G k a a b a b k a c b b a k a

k c b k a a a b b a

     

  

      

      
 

3 2 2 2 2
2 1 1 1 2 2

22 2 2 2
2 1 1 2 0 1 2 2 0 2

: (3 6 3 30 )

(2 2 2 6 2 2 8 ) 0

G k a b k a a b k a

k a a b a b k a c b b a k a

      

     

   

       
 

24 2 2
2 2 2

2 2 2 2
2 1 1 1 2 2

: (24 4 )

(3 6 3 30 ) 0

G k k a a b

k a b k a a b k a

  

      

  

   
 

25 2 2
2 2 2: (24 4 ) 0G k k a a b      

Solving the algebraic equations above, yields: 
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2 4 2 42 2 4 2 2 2 2 2 2 2 4

0 02 24

2 2 2 2 2 2 2 2 2 2
1 1 2 2

2 2 2 4
, ,

2 4

12 , , 6 , 12 , , 6 ,

, , ,

c k c k c c
a b

c c

a k c b k a k c b k

k k c c

        

 

         

   

   
   

     

                     

(3.4.8) 

 

Substituting Eq. (3.4.8) into Eq. (3.4.6) and Eq. (3.4.7), we have 

 
22 2 4 2 2 2

2 2 2 2 2 2

2

2 2
( ) 12 12

2

c k c
u k c G k c G

c

   
     



 
                      (3.4.9),         

                                                      
4 2 42 2 2 2 4

2 2 2 2 2 2

24

2 4
( ) 6 6

4

k c c
v k G k G

c

    
     



 
   

                        (3.4.10)
 

 

Combining with Eq. (2.2), we have: 

 
22 2 4 2 2 2 2 2 2 2 2

2
( ) ( ) 2

2 2 12 12
( , )

2
( )k x c t k x c t

c k c k c k c
u x t

c
d e d e 

        

 

 
 

 
   

 
                      

(3.4.11) 

 
4 2 42 2 2 2 4 2 2 2 2 2

24
( ) ( ) 2

2 4 6 6
( , )

4
( )k x c t k x c t

k c c k k
v x t

c
d e d e 

         

 

 
 

 
   

 
                   (3.4.12) 

 

 

Figure 4: µ(x, t), when δ=ε=c=µ=1, λ=k=d=2  
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Figure 5: v(x, t), when δ=ε=c=µ=1, λ=k=d=2  

 

4. Conclusion 

In this paper, the Bernoulli sub-ODE method has been successfully applied to obtain new 

solutions of some nonlinear partial differential equations. Thus, the Bernoulli sub-ODE method can 

be extended to solve the problems of nonlinear partial differential equations which arising in the 

theory of solitons and other areas. 
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