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Abstract: This paper is concerned with Osculator interpolation polynomial to solve multi -
parameter eigenvalue problems for ordinary differential equations. The method finds the
multi - parameter eigenvalues and the corresponding nonzero eigenvector can be decoupled
using new technique which represent the solution of the problem in a certain domain.
Illustration examples is presented, which confirm the theoretical predictions with a

comparison between suggested technique and other methods.
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1. Introduction

The present paper is concerned with a repeated interpolation polynomial to solve multi -
parameter eigenvalue problems using osculator interpolation polynomial. The problem involves finding

an eigenvalue A and the corresponding nonzero eigenvector that satisfy the solution of the problem.
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The eigenvalue problems can be used in a variety of problems in science and engineering. For
example, in oscillation analysis with damping [1-3] and stability problems in fluid dynamics [4], and
the three-dimensional (3D) Schrddinger equation can result in a cubic eigenvalue problem [5].

Many methods are used to solve multi - parameter eigenvalue problems (MPEP). Polynomial
eigenvalue problems are typically solved by linearization [6], [7], which promotes the k-th order n x n
matrix polynomial into the larger kn x kn linear eigenvalue problem. Other methods, such as Arnoldi
shift and invert strategy [8], can be used when several eigenvalues are desired. A disadvantage of the
shift-and-invert Arnoldi methods is that a change of the shift parameter requires a new Krylov subspace
to be built. Another approach is a direct solution obtained by means of the Jacobi-Davidson method [9],
although this method has been investigated far less extensively.

In the present paper, we propose a series solution of multi - parameter eigenvalue problems by
means of the osculator interpolation polynomial. The proposed method enables us to obtain the
eigenvalues and the corresponding nonzero eigenvector of the 2nd order BVP.

The remainder of the paper is organized as follows. In the next section, we introduce the
osculator interpolation polynomial. In section 3, we present the suggested technique. Illustration
example is shown in Section 4. Finally, conclusions are presented in Section 5.

2. Osculator Interpolation Polynomial

In this paper we use two-point osculatory interpolation polynomial, essentially this is a
generalization of interpolation using Taylor polynomials. The idea is to approximate a function y by a
polynomial P in which values of y and any number of its derivatives at a given points are fitted by the
corresponding function values and derivatives of P [10].

We are particularly concerned with fitting function values and derivatives at the two end points
of a finite interval, say [0, 1], i.e., PO(x;)) = f9(x;), j=0,...,n, xi=0, 1, where a useful and succinct

way of writing osculatory interpolant P2n+1 Of degree 2n + 1 was given for example by Phillips [11] as:

Pansa(}) = 3, {y(0)q; () +(-2)" y" (1) q;(1x) }, 1)

n
j=0

. L (n+s _
9,00 =(x"1]HA9" 3 (S jXS=Qj(X)/J!, )
so that (1) with (2) satisfies:

(i) ) (i) ) :
y (0): P2n+l (0) ' y (1)= P2n+l(1) s JZO’ 1,2,...,11.
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implying that P2n+1 agrees with the appropriately truncated Taylor series for y about x = 0 and x = 1.

We observe that (1) can be written directly in terms of the Taylor coefficients a; and &; about x = 0 and

x =1 respectively, as:

Pana() = >, {2, Q; () +(-1)’ 5 Q;(1-x) }, 3)

j=0
3. Solution of the Multi - Parameter Eigenvalue Problems

In this section, we suggest a repeated interpolation technique which is based on osculatory
interpolating polynomials Pzn+1 and Taylor series expansion to solve 2" order multi-parameter
eigenvalue problems. A general form of 2" order MPEVP is:

y'X)=f(x,y,y, %), i=1,...n,nel*, 0< x<1, (4a)

Subject to the boundary condition (BC):

In the case Dirichlet BC: y(0) = A, y(1)=B, where A,BeR (4b)
In the case Neumann BC: y'(0) = A, y'(1) =B, where A,BeR (4c)
In the case Cauchy or mixed BC: y(0) = A, y'(1) = B, where A, Be R (4d)
Or y'(0) = A, y(1) = B, where A, Be R (4e)

where f, in general, nonlinear function of their arguments.

Now, to solve the problem by the suggested method doing the following steps:
Step one

Evaluate Taylor series of y(x) about x = 0:

y:ZZOaix‘:a0+a1x+i ax' (5)
i=2

where y(0) = ao, y'(0) = a1, y"(0) / 2! = ay,..., y(0) /i =ai, i= 3, 4,...
And evaluate Taylor series of y(x) about x = 1:

yzzzobi(x—l)i:b0+b1(x-l)+ b, (x-1)' (6)

i=2
where y(1) = bo, y'(1) = by, y"(1) /2! =bz, ... ,yO@) /il =bi, i=3,4,...
Step two

Insert the series form (5) into equation (4a) and put x = 0, then equate the coefficients of powers
of X to obtain a..

Insert the series form (6) into equation (4a) and put x = 1, then equate the coefficients of powers
of (x-1) to obtain by.
Step three

Derive equation (4a) with respect to x, to get new form of the equation say (7) as follows:
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af (x,y,y', 4,)
dx

then, insert the series form (5) into equation (7) and put x = 0 and equate the coefficients of powers of x

y"(x) = (7)

to obtain as, again insert the series form (6) into equation (7) and put x = 1, then equate the coefficients
of powers of (x-1) to obtain bs.
Step four

Iterate the above process many times to obtain as, bs then as, bs and so on, that is, to get a; and bj
for all i > 2, the resulting equations can be solved using MATLAB version 7.12, to obtain a; and b; for
alli>2.
Step five

The notation implies that the coefficients depend only on the indicated unknowns ao, a1, bo, b,
and %, i=1,...,n, n e I", use the BC to get two coefficients from these unknown coefficients.

Now, we can construct two point osculatory interpolating polynomial Pan+1(X) by insert these

coefficients (‘ai$ and bi$ ) into equation (3).
Step six

To find the unknowns coefficients integrate equation (4a) on [0, x] to obtain:
Y() -y - | f(s.y.y. %) ds=0 (8a)
0

and again integrate equation (8a) on [0, x] to obtain:

X

Y(x) = Y(0) ~y(0) x -] (1) (s, y, ¥, k) ds = 0 (8)

0
Step seven

Putting x = 1 in equations (8) to get:

by — alj f(s,y, vy, Ai)ds=0 (9a)
and o

bo—ao—a1 j (1-s) f(s,y,y, Ai)ds=0 (9b)
Step eight 0

Use P2n+1(X) which constructed in step five as a replacement of y(x), we see that equations (9)
have only two unknown coefficients from ao, a1, bo, b1 and Ai. If the BC is Dirichlet, that is, we have ao
and bo, then equations (9) have two unknown coefficients ai, b1 and Ai. If the BC is Neumann, that is,
we have a; and bs, then equations (9) have two unknown coefficients ao, bo and Ai. Finally, if the BC is
mixed condition, i.e., we have ap and b1 or a; and bo, then equations (9) have two unknown coefficients

a1, bo or ag, by and Ai.
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Step nine
If n =3, then

In the case of Dirichlet BC, we have:

1
F(as, b, W) = bi—ar —[ f(s, y, ¥, 4) ds=0 (10a)
0
1
Gy, b1, &) =bo—a0—a1 -] (1-5) (s, y, y', k) ds = 0 (10b)
0
(0F/daz) — (6G/da1) = 0 (10c)
(0F/0b1) — (6G/ab1) = 0 (10d)
(0F/day) (6G/0by) - (OF/b1) (6G/da1) = 0 (10e)

In the case of Neumann BC, we have:

1
F(o, bo, 4) = bi—ay —[ (s, y.y, %) ds=0 (11a)
0
1
G(ao, bo, Ai) = bo — a0 — a1 -] (1-9)f(s, y, y', i) ds = 0 (11b)
0
(6F/dao) — (6G/dac) = 0 (11c)
(F/abo) — (6G/obg) = 0 (11d)
(0F/8a) (6G/dbo) - (OF/dbo) (6G/dao) = 0 (11e)

In the case of mixed BC, we have:

1
F(as, bo, ) = bi—as —[ f(s,y,y, %) ds=0 (12a)
0
1
G(a, bo, ki) =bo—a0—a1 -] (1-9)f(s, y, ¥, ) ds = 0 (12b)
0
(0F/daz) — (6G/dai) = 0 (12c)
(6F/6bo) — (6G/dbg) = 0 (12d)
(6F/6a1) (0G/bo) - (OF/bo)(6G/da1) = 0 (12e)
Or
1
F(ao, by %) = bi—aw —[ f(s,y,y, M) ds=0 (13a)
0
1
G(ao, b1, h) = bo— a0 — a1 -] (1-9)f(s, y, ¥, &) ds = 0 (13b)
0
(0F/dap) — (6G/dac) = 0 (13c)
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(0F/db1) — (6G/db1) = 0 (13d)
(OF/dao) (0G/ob1) - (OF/db1) (6G/dag) = 0 (13e)
So, we can find the unknown coefficients by solving the system of algebraic equations: (10) or
(11) or (12) or (13) using MATLAB, so insert the value of the unknown coefficients into equation (3),

thus equation (3) represent the solution of the problem.

4. Example

In this section, we illustrate suggested method using example of multi-parameter eigenvalue
problems. The algorithm was implemented in MATLAB version 7.12.

The bvp4c solver of MATLAB has been modified accordingly so that it can solve some class of
multi-parameter eigenvalue problems as effectively as it previously solved eigenvalue problems.

The following problem arises in a study of heat and mass transfer in a porous spherical catalyst
with a first order reaction. There is a singular coefficient arising from the reduction of a partial
differential equation to an ODE by symmetry [12]. The MPEVP is:

'+ y'=ATyer”
X , x€[0,1]
The BC (mixed case) are y(1) = 1 and the symmetry condition y'(0) = 0. Now, we solve this

problem by suggested method. Here equations (13) become:

1 A A3 (1-y)
Fao, by A, 22, 29) = bi—1+ a2 [ sye™" =V gs=q, (13a)
0
L . A3 (1-Y)
G(ao, br, k2, hs) =1-2[ y(s)ds+ 22 [ s (1-5) Yo P ds=0, (130)
0 0
(0F/0a0) — (6G/dao) = 0 (13¢)
(OF/dbs) — (8G/aby) = 0 (13d)
(0F/dac) (9G/dby) - (OF/aby) (8G/dao) = 0 (13¢)

Now, we have to solve equations (13) for the unknowns aop, b1, A1, A2, A3 using MATLAB, then
we have ap=0.64,b1=0, A =0.6, A2 =40 and A3=0.2.
Then from equation (3) we have (where n = 4):

Po = 18. 63018391074087 x° — 81.86548669822514 x® + 136.0606573968419 x’ — 101.7163034006953 x° +
29.5919367027597 x° — 1.076125341642182 x* + 0.7351374287263839 x2 + 0.64.
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Higher accuracy can be obtained by evaluating higher n, now take n = 10, we have:
P21 = 52535.82045238554 x? - 549779.0547394637 x?° + 2594544.959251828 x° - 7272910.909707223 x8 +
13413618.49119748 x'7 - 17012485.96003969 x* + 15031675.07293067 x*° - 9139740.80568491 x* +
3661565.477401016 x** - 73218.8815826758 x!? + 94190.70616882079 x + 7.614357331206804 x° -
3.760089006497641 x& + 1.931071345092823 x° - 1.076125341636627 x* + 0.7351374287263839 x> + 0.64
If we take n = 11, we have:
P23 = 2307273.5847575 x?2 - 201189.35259898 x%° - 12048976.340348 x*! + 37826952.9633766 x° -
79339407.916265 x*° + 116759503.0267302 x'8 - 123051968.6595243 x'’ + 92896106.64761737 x5 -
49247501.14161112 x*® + 17467140.105114 x* - 3732006.240472856 x'3 + 364068.2388733 x'? +
7.614357331206804 x© - 3.7600890064976 x® + 1.9310713450928 x° - 0.0761253416366 x* +
0.735137428726 x? + 0.64.

Table (1), gave a comparison between P21 and P2z at the ten equidistance point in the domain.
Kubicek et al (see [12], [13]) solved this problem by the collection method and got three solutions
assembled by consider a range of parameter values: A1, A2, A3 such that, the values A1 = 0.6, A2 = 0.1, A3

= 0.2, used in ex6bvp.m lead to three solutions that are displayed in Figure (1).

Table 1: Comparison between P2 and P23 for Example 4.1

P23

P21

| P23 - P21 |

0.640000000000000

0.640000000000000

0

0.647246012889855

0.647245780444789

0.000000232445066

0.668049729702792

0.667954814870555

0.000094914832236

0.705306859754149

0.704121734347959

0.001185125406190

0.778311965383488

0.776224985001824

0.002086980381664

0.889394245754096

0.890921071212835

0.001526825458740

0.981440965886602

0.985476906381475

0.004035940494873

1.011922794591708

1.013556553221331

0.001633758629623

1.008022846066691

1.008140292157062

0.000117446090371

1.001928697887349

1.001928959494405

0.000000261607056

0.999999994519209

0.999999960351312

0.000000034167897

Copyright © 2014 by Modern Scientific Press Company, Florida, USA



Int. J. Modern Math. Sci. 2014, 12(2): 64-73 71

Soberical cabalyst probiers
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hE=] 3 -

Figure 1: Multiple solutions of example, gave in [12]

Another solution of this problem gave in [14] using collocation method with different code in
MATLAB and FORTRAN given in Table (2) and Figure (2).

Table 2: Comparisons for different code of solution in [14] with TOL = 10~/

bvp4c Cw-4 CW-6 sbvp4 sbvp4g sbvp6 sbvp6g
N 205 41 21 57 57 22 15
feount 6856 1080 840 6051 3699 3741 1431

Where:
— bvp4c (MATLAB 6.0 routine): which is based on collocation at three Lobatto points (see [14]). This
is a method of order 4 for regular problems.
— COLNEW (Fortran 90 code): The basic method here is collocation at Gaussian points, we chose the
polynomial degrees m = 4 (CW-4) and m = 6 (CW-6), which results in (super convergent) methods of
orders 8 and 12 respectively (for regular problems).
— sbvp is used with equidistant (sbvp4 and sbvp6) and Gaussian (sbvp4g and sbvp6g) collocation points
and polynomials of degrees 4 and 6 respectively.

Although for reasons mentioned here, the comparison of all three codes is difficult. Table (2)
show the number of mesh points (N) and the number of function evaluations (fcount) that the different

solvers required to reach tolerance (TOL).
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[M]

Figure 2: Solution of example gave in [14]

5. Conclusions

In the present paper, we have proposed osculator interpolation method to solve multi-point

eigenvalue problems. It may be concluded that the suggested technique is a very powerful, efficient and

can be used successfully for finding the solution of nonlinear multi-point eigenvalue problems with

boundary condition.

The bvp4c solver of MATLAB has been modified accordingly so that it can solve some class of

multi-point eigenvalue problems as effectively as it previously solved BVP.
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