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Abstract: In sample surveys that incorporate auxiliary information, the precision of the 

survey estimates is always improved when multiple auxiliary information are available. 

Calibration is used in survey sampling to include auxiliary information. In the presence of 

powerful auxiliary variables, the calibration estimation meets the objective of reducing both 

the non-response bias and the sampling error. In this paper, multivariate calibration estimator 

for domain totals in stratified random sampling design is proposed using multiple auxiliary 

variables. Analytical approach for obtaining optimum calibration weights is developed. The 

efficiency gain of the proposed calibration based approach estimator vis-à-vis conventional 

estimators is studied through simulation. 
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1. Introduction 

The term calibration estimation was introduced by Deville and Sarndal (1992). They considered 

the problem of estimation of finite population total through the calibration approach. A theoretical 
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framework of the approach was given. Thus, expression for estimators, variance of the estimators and 

variance estimators were given. Different distance functions were considered to minimize the distance 

between the original weights and the new weights. 

Calibration estimation adjusts the original design weights to incorporate the known population 

totals of auxiliary variables. The calibration weights are chosen to minimize a given distance measure 

(or loss function) and these weights satisfy the constraints related auxiliary variable information. 

In survey sampling many authors such as Wu and Sitter (2001), Montanari and Ranalli (2005), 

Farrel and Singh (2005), Arnab and Singh (2005), Estavao and Sarndal (2006), Kott (2006), Singh 

(2006a, 2006b), Sarndal (2007), Kim and Park (2010), defined some calibration estimators using 

different constraints.  

Sarndal and Lundstrom (2005), Ardilly (2006) and Kott (2006) used calibration approach to 

achieve non-response adjustment for population parameters and Clement et al (2014a) used calibration 

approach to adjust for non-response in domain estimation. 

In stratified random sampling, calibration approach is used to obtain optimum strata weights. 

Kim, Sungur and Heo (2007) , Koyuncu and Kadilar (2013) defined some calibration estimators in 

stratified random sampling for population characteristics and Clement et al (2014b) defined calibration 

estimators for domain totals in stratified random sampling. Rao et al (2012) proposed multivariate 

calibration estimator for population mean in stratified random sampling when information on two 

auxiliary variables are available. 

In this study, under the stratified random sampling scheme, multivariate calibration estimator is 

proposed for domain totals when information on three auxiliary variables is available. 

 

2. Methodology 

2.2. The reviews of Calibration Estimation 

Consider a finite population 𝑈 of 𝑁 elements 

𝑈 = (𝑈1, 𝑈2, … , 𝑈𝑁)                                                                     (1) 

The estimator of the population total 𝑌  from a simple random sample of size 𝑛  taken without 

replacement is given by�̂� =
𝑁

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1 . Under a probability sampling design 𝑃, with probability𝑃(𝑠), 

Deville and Sarndal (1992) gave an unbiased estimator of the population total as�̂� = ∑ 𝑑𝑖𝑦𝑖
𝑛
𝑖=1  ; where 

𝑑𝑖 =
𝑁

𝑛
 is the design weight associated with unit  𝑖  and defined as the inverse of the inclusion 

probability𝜋𝑖 (𝜋𝑖 > 0 for each 𝑖), where 𝜋𝑖 = ∑ 𝑃(𝑠)𝑖∈𝑠  

When “bad” sample is observed; Deville and Sarndal proposed the used of an auxiliary variable 

𝑥𝑖 with calibration weights 𝑤𝑖to adjust for the “bad” sample, where the population total for the auxiliary 
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variable was defined as𝑡𝑥 = ∑ 𝑥𝑖
𝑁
𝑖=1 . Under an ideal condition, the estimator of the population total of 

the auxiliary variable should be�̂�𝑥 = ∑ 𝑑𝑖𝑥𝑖𝑖∈𝑠 ; but because of the presence of the “bad” sample, they 

observed that �̂�𝑥 = ∑ 𝑑𝑖𝑥𝑖𝑖∈𝑠 was far from𝑡𝑥 = ∑ 𝑥𝑖
𝑁
𝑖=1 . 

To adjust for the “bad” sample they chose weights 𝑤𝑖for  𝑖 ∈ 𝑠 (called the calibration weights) 

such that the𝑤𝑖’s are close to the𝑑𝑖’s and then assumed an unbiased estimator of the population total of 

the auxiliary variable to be �̂�𝑥 = ∑ 𝑤𝑖𝑥𝑖𝑖∈𝑠  

The new estimate of the population totals after the adjustment is�̂�𝑤 = ∑ 𝑤𝑖𝑦𝑖𝑖∈𝑠 . Following the 

chi-square distance measure of the form,∑
(𝑤𝑖−𝑑𝑖)2

𝑑𝑖𝑞𝑖
𝑖∈𝑠   where 𝑞𝑖 is a tuning parameter and subject to the 

calibration constraint, �̂�𝑥 = ∑ 𝑤𝑖𝑥𝑖𝑖∈𝑠 = ∑ 𝑥𝑖𝑖∈𝑠 , the corresponding Lagrange Multipliers is: 

𝐿 = ∑
(𝑤𝑖 − 𝑑𝑖)2

𝑑𝑖𝑞𝑖
− 2𝜆 ∑ 𝑤𝑖𝑥𝑖

𝑖∈𝑠𝑖∈𝑠

                                                                        (2) 

Differentiating (2) with respect to 𝑤𝑖 and setting it to zero gives the calibration weights as 

𝑤𝑖 = 𝑑𝑖 + 𝜆𝑑𝑖𝑞𝑖𝑥𝑖 where 𝜆 =
∑ 𝑤𝑖𝑥𝑖𝑖∈𝑠 −∑ 𝑑𝑖𝑥𝑖𝑖∈𝑠

∑ 𝑑𝑖𝑞𝑖𝑥𝑖
2

𝑖∈𝑠
. The resulting calibration estimator is 

�̂�𝑊 = ∑ 𝑤𝑖𝑦𝑖𝑖∈𝑠  = �̂� + (�̂�𝑥 − �̂�𝑥)�̂�  , where �̂� = ∑ 𝑑𝑖𝑦𝑖
𝑛
𝑖=1 , �̂�𝑥 = ∑ 𝑤𝑖𝑥𝑖𝑖∈𝑠  , �̂�𝑥 = ∑ 𝑑𝑖𝑥𝑖𝑖∈𝑠  and �̂� =

∑ 𝑑𝑖𝑞𝑖𝑥𝑖𝑦𝑖𝑖∈𝑠

∑ 𝑑𝑖𝑞𝑖𝑥𝑖
2

𝑖∈𝑠
. 

 

2.3. Multivariate Calibration Estimation 

Consider the finite population of equation (1) divided into 𝐷  domains;𝑈1, 𝑈2, … , 𝑈𝐷  of sizes  

𝑁1, 𝑁2, … , 𝑁𝐷 respectively. Domain membership of any population unit is unknown before sampling. It 

is assumed that domains are quite large.  

Consider a stratified random sampling design with 𝐻  strata and such that 𝑛ℎ  elements are 

considered from 𝑁ℎ in stratum ℎ , ℎ = 1,2, … , 𝐻. It is assumed that domain coincide with stratum. Then, 

the design weights are𝑑𝑗 = 𝑁ℎ 𝑛ℎ⁄  for all 𝑗 in stratum ℎ , 𝑗 = 1,2, … , 𝑁ℎ. 

Let 𝑦ℎ𝑗 be the 𝑦 value of the 𝑗th element in stratum ℎ, ℎ = 1,2, … , 𝐻 and 𝑗 = 1,2, … , 𝑁ℎ 

Let 𝑥ℎ𝑗 be the 𝑥 value of the 𝑗th element in stratum ℎ, ℎ = 1,2, … , 𝐻 and 𝑗 = 1,2, … , 𝑁ℎ  where 𝑦 and 𝑥 

are the study variable and auxiliary variable respectively. 

Following from Gamrot (2006), for a typical 𝑑th domain 𝑈𝑑 the domain total is: 

𝑌ℎ = ∑ 𝑦ℎ𝑗

𝑁ℎ

𝑗=1

 ;           ℎ = 1,2, … , 𝐻.                                                                (3)  

Let the conventional estimator of the domain totals under stratified random sampling design be 

given by  
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𝑦𝑠𝑡 = ∑ 𝑤ℎ𝑦ℎ𝑗

𝐻

ℎ=1

                                                                                          (4) 

where 𝑤ℎ is the design weights and is given by 𝑤ℎ = 𝑁ℎ 𝑁⁄ . 

In the presence of multiple auxiliary variables, a multivariate calibration estimator of the domain 

totals under stratified sampling is given by 

𝑦𝑠𝑡
∗ = ∑ 𝑤ℎ

∗𝑦ℎ𝑗

𝐻

ℎ=1

                                                                                         (5) 

where 𝑤ℎ
∗ is the new weights called the optimum calibration weights. 

Let 𝑋𝑖  , 𝑖 = 1,2, … , 𝑚  be the available auxiliary variables. Then the following calibration constraints 

are defined: 

∑ 𝑤ℎ
∗𝑥ℎ𝑖𝑗

𝐻

ℎ=1

= 𝑋𝑖     ;   𝑖 = 1,2, … , 𝑚                                                         (6) 

Let the loss function 𝐿 be defined as: 

𝐿 = ∑ ∑
𝑤ℎ

𝑞ℎ𝑖
(

𝑤ℎ
∗

𝑤ℎ
− 1)

2𝐻

ℎ=1

𝑚

𝑖=1

                                                                        (7) 

 

2.3.1. Derivation of optimum calibration weights for multivariate calibration estimation 

According to Rao et al (2012), the problem of determining the optimum calibration weights 𝑤ℎ
∗ 

may be formulated as a Mathematical Programming Problem (MPP) as follows: 

Minimize 

𝑍 = ∑
𝑤ℎ

𝑞ℎ
(

𝑤ℎ
∗

𝑤ℎ
− 1)

2𝐻

ℎ=1

                                                                                 (8) 

Subject to 

∑ 𝑤ℎ
∗𝑥ℎ𝑗1

𝐻

ℎ=1

= 𝑋1

∑ 𝑤ℎ
∗𝑥ℎ𝑗2

𝐻

ℎ=1

= 𝑋2

⋮

∑ 𝑤ℎ
∗𝑥ℎ𝑗𝑚

𝐻

ℎ=1

= 𝑋𝑚

                                                                                            (9) 

where 𝑞ℎ = ∑ 𝑞ℎ𝑖
𝑚
𝑖=1  and 

𝑤ℎ
∗ ≥ 0; ℎ = 1,2, … , 𝐻                                                                                     (10) 

The corresponding Lagrange’s multipliers are: 
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𝐿(𝑤ℎ
∗ , 𝜆𝑖) = ∑

𝑤ℎ

𝑞ℎ
(

𝑤ℎ
∗

𝑤ℎ
− 1)

2𝐻

ℎ=1

− 2 ∑ 𝜆𝑖

𝑚

𝑖=1

(∑ 𝑤ℎ
∗𝑥ℎ𝑖𝑗

𝐻

ℎ=1

− 𝑋𝑖)                                        (11) 

The necessary conditions for the solution of optimum calibration weights are: 

𝜕𝐿

𝜕𝑤ℎ
∗ =

𝜕𝐿

𝜕𝜆𝑖
= 0                                                                                                                          (12) 

That is: 

Differentiating (11) with respect to𝑤ℎ
∗ and equating to zero gives: 

𝑤ℎ
∗ = 𝑤ℎ (1 + 𝑞ℎ ∑ 𝜆𝑖𝑥ℎ𝑖𝑗

𝑚

𝑖=1

)                                                                                                 (13) 

and differentiating (11) with respect to 𝜆𝑖 and equating to zero gives: 

𝜕𝐿

𝜕𝜆1
= −2 (∑ 𝑤ℎ

∗𝑥ℎ𝑗1

𝐻

ℎ=1

− 𝑋1) = 0 ⇒ ∑ 𝑤ℎ
∗𝑥ℎ𝑗1

𝐻

ℎ=1

= 𝑋1

𝜕𝐿

𝜕𝜆2
= −2 (∑ 𝑤ℎ

∗𝑥ℎ𝑗2

𝐻

ℎ=1

− 𝑋2) = 0 ⇒ ∑ 𝑤ℎ
∗𝑥ℎ𝑗2

𝐻

ℎ=1

= 𝑋2

  ⋮

𝜕𝐿

𝜕𝜆𝑚
= −2 (∑ 𝑤ℎ

∗𝑥ℎ𝑗𝑚

𝐻

ℎ=1

− 𝑋𝑚)
= 0 ⇒ ∑ 𝑤ℎ

∗𝑥ℎ𝑗𝑚

𝐻

ℎ=1

= 𝑋𝑚

                                            (14) 

On substituting (13) into (14) gives: 

∑ 𝑤ℎ (1 + 𝑞ℎ ∑ 𝜆𝑖𝑥ℎ𝑗1

𝑚

𝑖=1

) 𝑥ℎ𝑗1

𝐻

ℎ=1

= 𝑋1

∑ 𝑤ℎ (1 + 𝑞ℎ ∑ 𝜆𝑖𝑥ℎ𝑗2

𝑚

𝑖=1

) 𝑥ℎ𝑗2

𝐻

ℎ=1

= 𝑋2

⋮

∑ 𝑤ℎ (1 + 𝑞ℎ ∑ 𝜆𝑖𝑥ℎ𝑗𝑚

𝑚

𝑖=1

) 𝑥ℎ𝑗𝑚

𝐻

ℎ=1

= 𝑋𝑚

                                                                              (15) 

Solving the system of equations in (15) for 𝜆𝑖 and on substituting the values of 𝜆𝑖 into (13), the 

optimum calibration weights are obtained as: 

𝑤ℎ
∗ = 𝑤ℎ + 𝑤ℎ𝑞ℎ(𝜆1𝑥ℎ𝑗1 + 𝜆2𝑥ℎ𝑗2 + ⋯ + 𝜆𝑚𝑥ℎ𝑗𝑚)                                                      (16) 

Substituting (16) into equation (5); a multivariate calibration estimator of domain totals under 

stratified random sampling is obtained as; 

𝑦𝑠𝑡
∗ = ∑{𝑤ℎ + 𝑤ℎ𝑞ℎ(𝜆1𝑥ℎ𝑗1 + 𝜆2𝑥ℎ𝑗2 + ⋯ + 𝜆𝑚𝑥ℎ𝑗𝑚)}𝑦ℎ𝑗

𝐻

ℎ=1

                                   (17) 
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The determination of the optimum weights 𝑤ℎ
∗  using the Lagrange’s multipliers technique 

discussed in this section is illustrated in the following theorem when information on three auxiliary 

variables 𝑋𝑖 (𝑖 = 1,2,3) is available. 

 

Theorem  

 In stratified sampling, given three auxiliary variables, the optimum calibration weights 𝑤ℎ
∗ that 

minimize 

𝑍 = ∑
𝑤ℎ

𝑞ℎ
(

𝑤ℎ
∗

𝑤ℎ
− 1)

2𝐻

ℎ=1

 

Subject to 

∑ 𝑤ℎ
∗𝑥ℎ𝑗1 = 𝑋1

𝐻

ℎ=1

 

∑ 𝑤ℎ
∗𝑥ℎ𝑗2 = 𝑋2

𝐻

ℎ=1

 

∑ 𝑤ℎ
∗𝑥ℎ𝑗3 = 𝑋3

𝐻

ℎ=1

 

is given by 

𝑤ℎ
∗ = 𝑤ℎ + 𝑤ℎ𝑞ℎ(𝜆1𝑥ℎ𝑗1 + 𝜆2𝑥ℎ𝑗2 + 𝜆3𝑥ℎ𝑗3) 

where 

𝑞ℎ = ∑ 𝑞ℎ𝑖

𝑚

𝑖=1

  , 𝑤ℎ
∗ ≥ 0 ; ℎ = 1,2, … , 𝐻  ; 𝑗 = 1,2, … , 𝑁ℎ 

𝜆1 =
𝑃(𝑇2 − 𝑈𝑅)(𝑋1 − �̂�1) + 𝑃(𝑄𝑈 − 𝑆𝑇)(𝑋2 − �̂�2) + 𝑃(𝑅𝑆 − 𝑄𝑇)(𝑋3 − �̂�3)

(𝑄𝑆 − 𝑃𝑇)2 − (𝑆2 − 𝑃𝑈)(𝑄2 − 𝑃𝑅)
 

𝜆2 =
𝑃(𝑄𝑈 − 𝑆𝑇)(𝑋1 − �̂�1) + 𝑃(𝑆2 − 𝑃𝑈)(𝑋2 − �̂�2) + 𝑃(𝑄𝑆 − 𝑃𝑇)(𝑋3 − �̂�3)

(𝑄𝑆 − 𝑃𝑇)2 − (𝑆2 − 𝑃𝑈)(𝑄2 − 𝑃𝑅)
 

𝜆3 =
𝑃(𝑅𝑆 − 𝑄𝑇)(𝑋1 − �̂�1) − 𝑃(𝑄𝑆 − 𝑃𝑇)(𝑋2 − �̂�2) − 𝑃(𝑄2 − 𝑃𝑅)(𝑋3 − �̂�3)

(𝑄𝑆 − 𝑃𝑇)2 − (𝑆2 − 𝑃𝑈)(𝑄2 − 𝑃𝑅)
 

𝑃 = ∑ 𝑤ℎ𝑞ℎ

𝐻

ℎ=1

𝑥ℎ𝑗1
2 ;   𝑄 = ∑ 𝑤ℎ𝑞ℎ

𝐻

ℎ=1

𝑥ℎ𝑗1𝑥ℎ𝑗2;  𝑅 = ∑ 𝑤ℎ𝑞ℎ

𝐻

ℎ=1

𝑥ℎ𝑗2
2 ;  

𝑆 = ∑ 𝑤ℎ𝑞ℎ

𝐻

ℎ=1

𝑥ℎ𝑗1𝑥ℎ𝑗3; 𝑇 = ∑ 𝑤ℎ𝑞ℎ

𝐻

ℎ=1

𝑥ℎ𝑗2𝑥ℎ𝑗3;  𝑈 = ∑ 𝑤ℎ𝑞ℎ

𝐻

ℎ=1

𝑥ℎ𝑗3
2  
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�̂�1 = ∑ 𝑤ℎ𝑥ℎ𝑗1

𝐻

ℎ=1

;   �̂�2 = ∑ 𝑤ℎ𝑥ℎ𝑗2

𝐻

ℎ=1

;   �̂�3 = ∑ 𝑤ℎ𝑥ℎ𝑗3

𝐻

ℎ=1

 

 

Proof of Theorem 

 Using the Lagrange’s multiplier technique, the function to be minimized is: 

𝐿(𝑤ℎ
∗ , 𝜆𝑖) = ∑

𝑤ℎ

𝑞ℎ
(

𝑤ℎ
∗

𝑤ℎ
− 1)

2𝐻

ℎ=1

− 2𝜆1 (∑ 𝑤ℎ
∗𝑥ℎ𝑗1

𝐻

ℎ=1

− 𝑋1) − 2𝜆2 (∑ 𝑤ℎ
∗𝑥ℎ𝑗2

𝐻

ℎ=1

− 𝑋2) 

− 2𝜆3 (∑ 𝑤ℎ
∗𝑥ℎ𝑗3

𝐻

ℎ=1

− 𝑋3)                                                                               (18) 

The necessary conditions as given in equation (12) are: 

𝜕𝐿

𝜕𝑤ℎ
∗ = 2(𝑤ℎ

∗ − 𝑤ℎ) − 2𝜆1𝑤ℎ𝑞ℎ𝑥ℎ𝑗1 − 2𝜆2𝑤ℎ𝑞ℎ𝑥ℎ𝑗2 − 2𝜆3𝑤ℎ𝑞ℎ𝑥ℎ𝑗3 = 0 

𝑤ℎ
∗ = 𝑤ℎ + 𝜆1𝑤ℎ𝑞ℎ𝑥ℎ𝑗1 + 𝜆2𝑤ℎ𝑞ℎ𝑥ℎ𝑗2 + 𝜆3𝑤ℎ𝑞ℎ𝑥ℎ𝑗3                               (19) 

𝜕𝐿

𝜕𝜆1
= −2 (∑ 𝑤ℎ

∗𝑥ℎ𝑗1

𝐻

ℎ=1

− 𝑋1) = 0 ⇒ ∑ 𝑤ℎ
∗𝑥ℎ𝑗1

𝐻

ℎ=1

= 𝑋1                             (20) 

𝜕𝐿

𝜕𝜆2
= −2 (∑ 𝑤ℎ

∗𝑥ℎ𝑗2

𝐻

ℎ=1

− 𝑋2) = 0 ⇒ ∑ 𝑤ℎ
∗𝑥ℎ𝑗2

𝐻

ℎ=1

= 𝑋2                             (21) 

⋮

𝜕𝐿

𝜕𝜆3
= −2 (∑ 𝑤ℎ

∗𝑥ℎ𝑗3

𝐻

ℎ=1

− 𝑋3)
= 0 ⇒ ∑ 𝑤ℎ

∗𝑥ℎ𝑗3

𝐻

ℎ=1

= 𝑋3                              (22) 

Solving the necessary conditions (19) to (22) by substituting (19) into (20), (21) and (22) respectively 

gives: 

𝜆1 ∑ 𝑤ℎ𝑞ℎ𝑥ℎ𝑗1
2 + 𝜆2 ∑ 𝑤ℎ𝑞ℎ𝑥ℎ𝑗1𝑥ℎ𝑗2 + 𝜆3 ∑ 𝑤ℎ𝑞ℎ𝑥ℎ𝑗1𝑥ℎ𝑗3 = 𝑋1 − �̂�1

𝐻

ℎ=1

𝐻

ℎ=1

𝐻

ℎ=1
 

𝜆1 ∑ 𝑤ℎ𝑞ℎ𝑥ℎ𝑗1𝑥ℎ𝑗2 + 𝜆2 ∑ 𝑤ℎ𝑞ℎ𝑥ℎ𝑗2
2 + 𝜆3 ∑ 𝑤ℎ𝑞ℎ𝑥ℎ𝑗2𝑥ℎ𝑗3 = 𝑋2 − �̂�2

𝐻

ℎ=1

𝐻

ℎ=1

𝐻

ℎ=1
 

𝜆1 ∑ 𝑤ℎ𝑞ℎ𝑥ℎ𝑗1𝑥ℎ𝑗3 + 𝜆2 ∑ 𝑤ℎ𝑞ℎ𝑥ℎ𝑗2𝑥ℎ𝑗3 + 𝜆3 ∑ 𝑤ℎ𝑞ℎ𝑥ℎ𝑗3
2 = 𝑋3 − �̂�3

𝐻

ℎ=1

𝐻

ℎ=1

𝐻

ℎ=1
 

and solving the above simultaneous equations completes the proof. 

 

3.  Simulation and Discussion 

We considered an artificial population taken from Cochran (1977; Table 6.1). The 𝑥-variable 

represents the auxiliary variables while the 𝑦-variable represents the study variable. The population was 
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divided into three strata with three cells each with six units selected by systematic sampling scheme. 

Three units were then selected from the six units earlier selected by simple random sampling without 

replacement. Therefore, 27 units were selected from 49 units in the original population as presented in 

table 1. 

 

Table 1: Population adapted from Cochran (1977) 

Stratum1    Stratum2    Stratum3    

𝑥ℎ𝑗1 𝑥ℎ𝑗2 𝑥ℎ𝑗3 𝑦ℎ𝑗 𝑥ℎ𝑗1 𝑥ℎ𝑗2 𝑥ℎ𝑗3 𝑦ℎ𝑗 𝑥ℎ𝑗1 𝑥ℎ𝑗2 𝑥ℎ𝑗3 𝑦ℎ𝑗 

76 46 46 514 23 50 71 612 78 56 43 560 

67 2 87 645 37 44 43 423 66 44 36 548 

29 121 30 623 61 64 25 760 60 38 74 585 

172 169 163 1,782 121 158 139 1,805 204 138 153 1,693 

 

Table 2 shows the following sample information�̂�1 = ∑ 𝑤ℎ𝑥ℎ𝑗1
𝐻
ℎ=1 = 171.5321 ; 

�̂�2 = ∑ 𝑤ℎ𝑥ℎ𝑗2
𝐻
ℎ=1 = 153.4275; �̂�3 = ∑ 𝑤ℎ𝑥ℎ𝑗3

𝐻
ℎ=1 = 152.5508 ;  

𝑃 = ∑ 𝑤ℎ𝑞ℎ𝑥ℎ𝑗1
2𝐻

ℎ=1  = 30,531.0845 ; 𝑄 = ∑ 𝑤ℎ𝑞ℎ
𝐻
ℎ=1 𝑥ℎ𝑗1𝑥ℎ𝑗2 =  26,054.3538 ; 

𝑅 = ∑ 𝑤ℎ𝑞ℎ𝑥ℎ𝑗2
2𝐻

ℎ=1 =  23,721.8765 ; 𝑆 = ∑ 𝑤ℎ𝑞ℎ
𝐻
ℎ=1 𝑥ℎ𝑗1𝑥ℎ𝑗3 = 26,356.5731; 

𝑇 = ∑ 𝑤ℎ𝑞ℎ𝑥ℎ𝑗2𝑥ℎ𝑗3
𝐻
ℎ=1   =    23,439.3489 ; 𝑈 = ∑ 𝑤ℎ𝑞ℎ𝑥ℎ𝑗3

2𝐻
ℎ=1 = 23,356.1936 

  

Table 2: Sample information 

estimator Stratum 1 Stratum 2 Stratum 3 total 

𝑁ℎ 16 13 20 𝑁 = 49 

𝑛ℎ 9 9 9 𝑛 = 27 

𝑥ℎ𝑗1 172 121 204 - 

𝑥ℎ𝑗2 169 158 138 - 

𝑥ℎ𝑗3 163 139 153 - 

𝑦ℎ𝑗 1782 1805 1693 - 

𝑤ℎ 0.3265 0.2653 0.4082  

𝑤ℎ𝑥ℎ𝑗1 52.1580 32.1013 83.2728 171.5321 

𝑤ℎ𝑥ℎ𝑗2 55.1785 41.9174 56.3316 153.4275 

𝑤ℎ𝑥ℎ𝑗3 53.2195 36.8767 62.4546 152.5508 

𝑤ℎ𝑞ℎ𝑥ℎ𝑗1
2  9659.1760 3884.2573 16987.6512 30531.0845 

𝑤ℎ𝑞ℎ𝑥ℎ𝑗1𝑥ℎ𝑗2 9490.7020 5072.0054 1149.6464 26054.3538 

𝑤ℎ𝑞ℎ𝑥ℎ𝑗2
2  9325.1665 6622.9492 7773.7608 23721.8765 

𝑤ℎ𝑞ℎ𝑥ℎ𝑗1𝑥ℎ𝑗3 9153.7540 4462.0807 12740.7384 26356.5731 

𝑤ℎ𝑞ℎ𝑥ℎ𝑗2𝑥ℎ𝑗3 8994.0955 5826.5186 8618.7348 23439.3489 

𝑤ℎ𝑞ℎ𝑥ℎ𝑗3
2  8674.7785 5125.8613 9555.5538 23356.1936 

𝑤ℎ𝑦ℎ𝑗 581.8230 478.8665 691.0826 1751.7721 
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For the population the known population totals for the auxiliary variables are 𝑋1 = 497; 𝑋2 =

465; 𝑋3 = 455 and from the analysis𝜆1 = 0.2308  ; 𝜆2 =  0.4996, 𝜆3 = −0.7452. 

Thus, the multivariate calibrated weights  (𝑤ℎ
∗) in stratified sampling proposed in (19) reduces 

to 

𝑤ℎ
∗ = 𝑤ℎ + 𝑤ℎ(0.2308𝑥ℎ𝑗1 + 0.4996𝑥ℎ𝑗2 − 0.7452𝑥ℎ𝑗3)                                                    (23) 

which are obtained and presented in table 3.  

The conventional estimator of domain total in stratified sampling given in (4) is 

𝑦𝑠𝑡 = ∑ 𝑤ℎ𝑦ℎ𝑗

𝐻

ℎ=1

= 1,751.7721                                                                                                       (24) 

Whereas an estimate using the proposed generalized multivariate estimator in (5) is 

𝑦𝑠𝑡
∗ = ∑ 𝑤ℎ

∗𝑦ℎ𝑗

𝐻

ℎ=1

= 6,262.3798                                                                                                     (25) 

The true total for this population is 6,262 (see Cochran 1977 pp.152). Therefore from (24) and 

(25), it is evident that the proposed multivariate calibration estimator is a better approximation of the 

true population total than the conventional estimator. 

 

Table 3: Optimum calibrated weights 

stratum 1 2 3 

Optimum weights (𝑤ℎ
∗) 1.1956 1.1357 1.2297 

 

 

4. Conclusions 

Analytical approach for determining multivariate calibration estimator to improve survey 

estimates when multiple auxiliary variables are available is developed. The problem of determining the 

optimum calibration weights was formulated as a Mathematical Programming Problem (MPP) that 

minimizes the Chi-square type loss function subject to multiple calibration constraints using Lagrange 

multiplier technique. The optimum calibration weights do not violate the calibration restrictions. An 

empirical study has been given to show the performance of the proposed multivariate calibration 

estimator over the stratified random sampling estimator. The results showed that the multivariate 

calibration estimator is more efficient than the conventional stratified random sampling estimator. 
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