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Abstract: In any graph, each vertex cover is a dominating set, but the converse is not true.  

This article characterizes the simple loop-free connected graphs for which each dominating 

set is a vertex cover.  This characterization holds for all simple graphs since a disconnected 

graph is a union of its components. 
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1. Introduction 

In Graph Theory, vertex covering and domination are two topics on which hundreds of 

publications have been brought out.  Some seminal works on the vertex cover problem are in [4, 5, 7, 8, 

9, 16, 17, 18, 21].  [1, 2, 10, 13, 14, 15, 20] are excellent research reports on domination, the study of 

which seems to have begun in 1960 [3].  But almost all the research seems to be for minimum vertex 

covers or minimum dominating sets, with algorithms being accorded prime status.  To the best of our 

knowledge, there has been no attempt at characterization-oriented study of interplay between vertex 

covers and dominating sets, and this is a motivation for this article.  
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First, some preliminary theory.  A substantial portion of this can be found in [4, 6, 11].  The 

presentation here is purely for ready reference.  If V is a finite nonempty set, then 2V denotes its power 

set [19] – that is, the set of all the subsets of V (including the empty set 𝜙); and 2V* denotes the set of all 

nonempty subsets of V – that is, 2V* = 2V − {𝜙}.  And 2V* − {V} is the set of all nonempty proper subsets 

of V.  The cardinality (or, size) of a finite set V is denoted by │V│, and is the number of elements in V.   

A simple graph is an ordered pair G = (V, E) where V is a nonempty finite set and E ⊂ 2V* such 

that (i) if y ∈ V then y ∈ X for some X ∈ E, and (ii)│X│≤ 2 for each X ∈ E.  This definition does not 

permit any isolated vertices [11].  The sets V and E are, respectively, the vertex set and the edge set of 

the graph G.  Each element of V is a vertex in G and each member of E is an edge in G.  The integers 

│V│ and │E│ are, respectively, the order (= the number of vertices) and the rank (= the number of 

edges) of G.  A loop is an edge X with │X│= 1; more precisely, a loop at a vertex y is just the set {y} 

in E.  G is loop-free if │X│= 2 for each X ∈ E.   

If x, y ∈ V are distinct, then x and y are adjacent if {x, y} ∈ E; in this case x and y are neighbors 

in G.  If {x, y} ∈ E then x and y are the end points of the edge {x, y}.  Let S ∈2V*− {V}.  The set N(S) 

= {y ∈ V│y is adjacent to some x ∈ S} is the open neighborhood of S; the set C(S) = N(S) ∪ S is the 

closed neighborhood of S.  Open neighborhoods will simply be referred to as neighborhoods.  In 

particular, when S is a singleton, say S = {x}, then N(S) is denoted by N(x), the neighborhood of x, and 

C(S) by C(x), the closed neighborhood of x.   

The degree of a vertex x in G is denoted by dx (or, dx(G), if G needs mention) and is defined as 

dx = │N(x)│.  A vertex y with dy = 1 is a pendant vertex (or, a leaf).  The largest degree of G is denoted 

by Δ(G), and is defined as Δ(G)= max{dx│x∈ V}. 

A path in G between two distinct vertices x and y is a sequence x, z1, . . . .zk, y of distinct vertices 

in G such that (i) x is adjacent to z1; (ii) y is adjacent to zk; and (iii) zj is adjacent to zj + 1 for j = 1 through 

k − 1.  Obviously, if x and y are adjacent, then the edge joining x and y is a path between them.  A vertex 

x is connected to a vertex y if there is a path between x and y.  G is a connected graph if x is connected 

to y whenever x and y are distinct vertices in G. 

G = (V, E) is complete if each vertex in G is adjacent to every other vertex in G.  If W ∈ 2V* then 

W is independent if no two vertices in W are adjacent.     

G is bipartite if there is a partitioning V =A ∪B (that is, A ∩ B = 𝜙) such that (i) A and B are 

independent; and (ii) each edge in G has one end point in A and the other end point in B.  In this case, 

G is also written G = [A, B].  A bipartite graph G = [A, B] is complete bipartite if every vertex of A is 

adjacent to every vertex of B.  If G = [A, B] is complete bipartite then G is also written G = Kp, q where 

p = │A│ and q = │B│. 
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S covers an edge {x, y} if S ∩{x, y} ≠ 𝜙.  S is a vertex cover (for G) if X ∈ E ⟹ S ∩X≠ 𝜙 (that 

is, S covers every edge in G).  Additionally, if no proper subset of S is a vertex cover, then S is a minimal 

vertex cover.  S is a minimum vertex cover if (i) S is a vertex cover and (ii) │T│≥│S│ for every vertex 

cover T.  If S is a minimum vertex cover, then the positive integer │S│is the vertex cover number of G.   

Let D ⊂ V.  Then D is a dominating set if for each x ∈ V, either x ∈ D or x is adjacent to some y 

∈ D.  If D is a dominating set and no proper subset of D is a dominating set, then D is a minimal 

dominating set.  Additionally, if │M│≥│D│ for every dominating set M in G, then D is a minimum 

dominating set.  If D is a minimum dominating set then │D│ is the dominating number of G.   

If 𝛽(G)and𝛾(G) denote, respectively, the vertex cover number and the dominating number of G, 

then 𝛽(G)≥ 𝛾(G).   

1.1 is a known result; its proof is straightforward [12].  1.2 is a counterexample to the converse 

of 1.1.  The central problem of this article stems from 1.2. 

1.1: Proposition.  Every vertex cover is a dominating set. 

1.2: Example.  The converse of 2.1 is not true.  If G is a complete graph on n (≥ 3) vertices, then for 

each x ∈ V, {x} is a dominating set but not a vertex cover.   

Central problem of this article: Characterize the simple loop-free connected graphs for which every 

dominating set is a vertex cover.   

This is answered in 2.3 (section 2).  All the graphs in the coming discussions are assumed simple, 

loop-free, connected, with at least two vertices and one edge. 

 

2. Results and Discussion 

2.1: Proposition. Let G = K1, m.  Then every dominating set of G is a vertex cover. 

Proof. Let V be the vertex set of G.  Note that │V│= m + 1.The conclusion is obvious when m = 1, and 

so let m ≥ 2.  There is a unique x ∈ V such that dx = m, and.  Let D be a dominating set.  Suppose x ∈ 

D.  Then clearly every edge is covered by D. 

Suppose x ∉ D.  Then D ⊂ V −{x}.  Write V − {x} = {y1, . . ., ym}.  Clearly V − {x} is 

independent.  If some yj ∉ D then yj has no neighbor in D.  But this would contradict the dominating 

nature of D.  So V –{x} ⊂ D.  Then D (= V − {x}) is a vertex cover.   

 

2.2: Proposition. Let G = (V, E) have the property that each dominating set is a vertex cover.  Then: 

(a) if {x, y} ∈ E then either x or y is a pendant vertex; 

(b) there is a z ∈ V such that dz = │V│−1; and z is unique if │V│≥3; 

(c) the set V −{z} is independent (where z is as in (b)); and 
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(d) G = K1, m where m = │V − {z}│. 

Proof.  (a) Suppose there is {x, y} ∈ E such that neither x nor y is a pendant vertex.  Let V − {x, y} = 

D.  Then D is a dominating set because each of x and y has a neighbor in D.  Also, D is not a vertex 

cover because D does not cover the edge {x, y}.  But this contradicts the hypothesis.  Thus (a) follows. 

(b) Let z ∈ V be such that dz = 𝚫(G).  If dz = 1, then │V│ = 2 (owing to the connectedness of 

G), and (b) is immediate.  So assume dz > 1.  Then│V│≥ 3.  Suppose some y (∈ V) is not a neighbor 

of z.  Since G is connected, there is a path – call it P – between z and y.  Since z and y are not adjacent, 

there is an intermediate vertex, say b, in P such that b and z are adjacent.  Since b is an intermediate 

vertex in P, there is a vertex c in P such that (i) c is distinct form b and x, and (ii) c is adjacent to b.  Then 

db > 1, and so the edge {b, z} has no pendant vertices.  But this cannot happen in G because of (a).  

Consequently, every y ∈ V − {z} is a neighbor of z, whence dz = n −1, where n = │V│. 

Next, with │V│≥ 3, suppose there are two distinct vertices z1 and z2 in V with dz1 = dz2 = n –1.  

Note that n –1 ≥ 2.  Then {z1, z2} ∈ E.  But then the edge {z1, z2} is without a pendant vertex, 

contradicting (a).  This completes (b). 

(c) From (b), it is clear that {z} is a dominating set – and so by hypothesis, {z} is a vertex cover.  

Then V −{z} is independent. 

(d) Let z be as in (b).  Setting A = {z} and B = V −{z}, (d) follows at once.  

 

2.3: Proposition.  Let G be a simple loop-free connected graph.  Then each dominating set in G is a 

vertex cover if and only if G = K1, m, where m = │V│ − 1. 

Proof.  Consequence of 2.1 and 2.2.    

 

2.4: Proposition.  Let G be a simple loop-free connected graph.  Suppose each dominating set in G is a 

vertex cover.  Then:  

(a) each minimal dominating set in G is a minimal vertex cover; and 

(b) each minimal vertex cover in G is a minimal dominating set. 

Proof.  (a)  Let D be a minimal dominating set.  Then by hypothesis, D is a vertex cover.  Let M be a 

minimal vertex cover such that M ⊂ D.  Then M is a dominating set (by 1.1).  Since D is a minimal 

dominating set, it follows that M = D, whence D is a minimal vertex cover. 

(b)  Let D be a minimal vertex cover.  Then by 1.1, D is a dominating set.  Let M be a minimal 

dominating set such that M ⊂ D.  Then M is a vertex cover (by hypothesis).  Since D is a minimal vertex 

cover, it follows that M = D, whence D is a minimal dominating set.    
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2.5: Proposition.  Let G be a simple loop-free connected graph.  Suppose each minimal dominating set 

in G is a minimal vertex cover.  Then each dominating set in G is a vertex cover.    

Proof.  Let D be a given dominating set.  Then there is a minimal dominating set D1 ⊂ D.  By hypothesis, 

D1 is a minimal vertex cover, whence D is a vertex cover.   

 

2.6: Proposition.  Let 𝜷 (G) denote the vertex cover number of the graph G.  Then  

𝜷(G) = 1 if and only if G = K1, m. 

Proof.  Assume 𝜷 (G) = 1.  Let S = {x} be a vertex cover.  Then V −{x} is independent and every vertex 

in V −{x} is adjacent to x, whence G = K1, m (where m = │V –{x}│). 

Conversely, suppose G = K1, m.  For m = 1 the conclusion is immediate.  So let m ≥ 2.  Then dx 

= m for a unique x ∈ V, by 2.2(b).  So{x} is a vertex cover, whence 𝜷(G) = 1.  

 

2.7: Proposition.  For a simple loop-free connected graph G, the following are equivalent: 

(a) G = K1, m; 

(b) each dominating set in G is a vertex cover; and 

(c) 𝜷(G) = 1. 

Proof.  Consequence of 2.3 and 2.6.     

 

3. Conclusions  

1) The only class of simple loop-free connected graphs for which each dominating set is a vertex cover 

is the class 𝓚1 of the graphs K1, m where m is a positive integer (see 2.3).   

2)  Hence, if a graph G is in the class 𝓚1,every algorithm that enumerates the minimal vertex covers of 

G will also enumerate the minimal dominating sets of G, and vice-versa. 

3) If a graph G is not in the class 𝓚1, then G has a dominating set that is not a vertex cover.   

3)𝜷(G) = 𝜸(G) = 1 if and only if G is in the class 𝓚1 (see 2.7).   
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