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Abstract: Inverse Weibull-Geometric Distribution which generalizes the Inverse 

Exponential-Geometric distribution, Inverse Weibull distribution, Inverse Exponential 

distribution and Inverse Rayleigh distribution has been introduced in this paper. The model 

can be considered as another useful 3-parameter distribution. Model characterization is 

studied, we derive the cumulative distribution and hazard functions, the density of the order 

statistics and calculate expressions for its moments and for the moments of the order 

statistics. Mixture model of two Inverse Weibull-Geometric distributions is investigated. 

Estimates of parameters using method of maximum likelihood have been obtained through 

simulations. Two real life example are provided one for complete data another for censored 

data to show the flexibility and potentiality of the proposed distribution and comparison with 

Inverse Weibull distribution, Inverse Exponential Geometric distribution, Inverse 

Exponential distribution and Inverse Rayleigh distribution is also discussed. The proposed 

model compares well with other competing models to fit the data. 

Keywords: Inverse Weibull distribution, Inverse Rayleigh distribution Hazard rate, Mixture 

distribution, Censored data.  
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1. Introduction 

The inverse Weibull distribution is one of the most commonly used lifetime distribution which 

can be used in the reliability engineering discipline. The Inverse Weibull distribution is used to model a 
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variety of failure characteristics such as infant mortality, useful life and wear-out periods and can be 

used to determine the cost effectiveness and maintenance periods of reliability centered maintenance 

activities. In literature various other distributions have been proposed to model lifetime model. Adamidis 

and Loukas [2] proposed the two-parameter exponential-geometric distribution with decreasing failure 

rate. Kus [13] introduced the exponential-Poisson distribution with decreasing failure rate and discussed 

several of its properties. Adamidis, Dimitrakopoulou and Loukas [1] proposed the extended exponential-

geometric distribution which generalizes the exponential-geometric distribution. The hazard function of 

the extended exponential-geometric distribution can be monotone decreasing, increasing or constant and 

they discussed several reliability features and its properties. Wagner, Alice and Gauss [4] proposed the 

Weibull-Geometric distribution which generalizes the exponential-geometric distribution proposed by 

Adamidis, Dimitrakopoulou and Loukas. The hazard function of Weibull-Geometric distribution takes 

more general forms. The Weibull-Geometric distribution is useful for modeling unimodal failure rates. 

Wang and Elbatal [20] proposed a modified Weibull geometric distribution which have monotonically 

increasing, decreasing, bathtub-shaped, and upside-down bathtub-shaped hazard rate functions. Saboor, 

Kamal and Ahmad [18] proposed a transmuted exponential Weibull distribution which have a bathtub-

shaped and upside-down bathtub-shaped hazard rate functions. Kanchan, Neetu and Suresh Kumar [10] 

proposed Generalized Inverse Generalized Weibull (GIGW) distributions and discussed some 

mathematical properties of the distribution with a real life example. Inverse distributions, namely, 

Inverse Gamma, Inverse Generalized Gamma, Inverse Weibull [17], and Inverse Rayleigh [19], have 

also been studied in literature [6, 7, 9]. Khan and Jan [11, 12] worked on mixture models and discussed 

the stress-strength problem of the systems, where the strength follows finite mixture of two parameter 

Lindley distribution and stress follows exponential, Lindley distribution and mixture of two parameter 

Lindley distribution and obtained general expressions for the reliabilities of a system.  

In this paper, we introduced a three parameter continuous distribution model, the Inverse Weibull 

Geometric Distribution (IWGD). It is the distribution of reciprocal of a variable distributed according to 

the generalized Weibull distribution. A comprehensive description of some mathematical properties of 

the IWGD are discussed with the hope that it will attract wider applications in reliability, engineering 

and other areas of research.  

 

2. The Inverse Weibull Geometric Distribution (IWGD) 

The Weibull geometric distribution with parameters 𝑝 ∈ (0,1), 𝛼 > 0 𝑎𝑛𝑑 𝛽 > 0 is defined by 

its probability density function (pdf)  

 

                𝑓(𝑥; 𝑝, 𝛼, 𝛽) = 𝛼𝛽𝛼(1 − 𝑝)𝑥𝛼−1𝑒−(𝛽𝑥)𝛼
{1 − 𝑝𝑒−(𝛽𝑥)𝛼

}
−2

;      𝑥 > 0                              (1) 
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The cumulative distribution function (cdf) of this distribution is 

                                        𝐹(𝑥) =
1 − 𝑒−(𝛽𝑥)𝛼

1 − 𝑝𝑒−(𝛽𝑥)𝛼   ;     𝑥 > 0                                                                    (2) 

The inverse of Weibull geometric distribution called Inverse Weibull Geometric (IWGD) with 

parameters 𝑝 ∈ (0,1), 𝛼 > 0 𝑎𝑛𝑑 𝛽 > 0 is defined by 

𝑓𝐼𝑊𝐺𝐷(𝑥; 𝑝, 𝛼, 𝛽) = 𝛼𝛽𝛼(1 − 𝑝)𝑥−(𝛼+1)𝑒
−(

𝛽
𝑥

)
𝛼

{1 − 𝑝𝑒
−(

𝛽
𝑥

)
𝛼

}

−2

  

𝑥, 𝛼, 𝛽 > 0    𝑎𝑛𝑑  𝑝𝜖(0,1)                                (3) 

The cumulative distribution function of the distribution is given by 

                             𝐹𝐼𝑊𝐺𝐷(𝑥; 𝑝, 𝛼, 𝛽) =
(1 − 𝑝)𝑒

−(
𝛽
𝑥

)
𝛼

1 − 𝑝𝑒
−(

𝛽
𝑥

)
𝛼   ;     𝑥, 𝛼, 𝛽 > 0    𝑎𝑛𝑑  𝑝𝜖(0,1)                 (4) 

The Survival function and Hazard rate function of IWGD are 

                                                               𝑆𝐼𝑊𝐺(𝑥)

=
1 − 𝑒

−(
𝛽
𝑥

)
𝛼

1 − 𝑝𝑒
−(

𝛽
𝑥

)
𝛼                                                                                                                (5) 

                                                       ℎ𝐼𝑊𝐺𝐷(𝑥)

=
𝛼𝛽𝛼(1 − 𝑝)𝑥−(𝛼+1)𝑒

−(
𝛽
𝑥

)
𝛼

(1 − 𝑒
−(

𝛽
𝑥

)
𝛼

) (1 − 𝑝𝑒
−(

𝛽
𝑥

)
𝛼

)

                                                                              (6) 

  

Special Cases 

1) When For  𝛼 = 1, the new distribution is obtained called Inverse Exponential Geometric distribution 

(IEGD) with pdf and cdf respectively given as 

 

𝑓𝐼𝐸𝐺𝐷(𝑥; 𝑝, 𝛽) = 𝛽(1 − 𝑝)𝑥−2𝑒−
𝛽

𝑥 {1 − 𝑝𝑒−
𝛽

𝑥}
−2

;  𝑥, 𝛽 > 0    𝑎𝑛𝑑  𝑝𝜖(0,1) 

 

𝐹𝐼𝐸𝐺𝐷(𝑥; 𝑝, 𝛽) =
(1 − 𝑝)𝑒−

𝛽
𝑥

1 − 𝑝𝑒−
𝛽
𝑥

  ;     𝑥, 𝛽 > 0    𝑎𝑛𝑑  𝑝𝜖(0,1) 

2) When 𝑝  approaches to zero, IWGD approaches to Inverse Weibull Distribution (IWD) with 

parameter 𝛼 𝑎𝑛𝑑 𝛽.  
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3) When 𝑝  approaches to zero and  𝛼 = 2 , we get Inverse Rayleigh Distribution (IRD) with 

parameter 𝛽.  

4) When 𝑝  approaches to zero and  𝛼 = 1 , we get Inverse Exponential Distribution (IED) with 

parameter 𝛽.  

  
Fig. 1: Plots for IWGD function 

  
Fig. 2: Plots for Hazard Rate of IWGD 

 

3. Moments of IWGD 

The 𝑘𝑡ℎ order moment around zero for 𝑋~𝐼𝑊𝐺(𝛼, 𝛽, 𝑝) is written as 
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𝐸(𝑋𝑘) = ∫ 𝑥𝑘𝛼𝛽𝛼(1 − 𝑝)𝑥−(𝛼+1)𝑒
−(

𝛽
𝑥

)
𝛼

{1 − 𝑝𝑒
−(

𝛽
𝑥

)
𝛼

}

−2

𝑑𝑥

∞

0

 

Substituting (
𝛽

𝑥
)

𝛼

= 𝑦, we get 

𝐸(𝑋𝑘) = (1 − 𝑝)𝛽𝑘 ∫ 𝑦
−𝑘
𝛼 𝑒−𝑦(1 − 𝑝𝑒−𝑦)−2𝑑𝑦

∞

0

 

𝐸(𝑋𝑘) = (1 − 𝑝)𝛽𝑘Γ (1 −
𝑘

𝛼
) ∑ 𝑝𝑗

∞

𝑗=0

(𝑗 + 1)
𝑘
𝛼 

For 𝛼 = 1, we get 𝑘𝑡ℎ order moment of Inverse Exponential distribution. 

The moment generating function of IWGD of X can be written as 

𝑀(𝑡) = (1 − 𝑝) ∑ [
𝑡𝑘

𝑘!
𝛽𝑘Γ (1 −

𝑘

𝛼
) ∑ 𝑝𝑗

∞

𝑗=0

(𝑗 + 1)
𝑘
𝛼]

∞

𝑘=0

,     𝑓𝑜𝑟 |𝑡| < 1 

The cumulative generating function of IWGD of X is given by 

𝐾(𝑡) = 𝑙𝑜𝑔𝑀(𝑡) = 𝑙𝑜𝑔 {(1 − 𝑝) ∑ [
𝑡𝑘

𝑘!
𝛽𝑘Γ (1 −

𝑘

𝛼
) ∑ 𝑝𝑗

∞

𝑗=0

(𝑗 + 1)
𝑘
𝛼]

∞

𝑘=0

} , 𝑓𝑜𝑟 |𝑡| < 1 

The mean and variance of IGWD are 

𝐸(𝑋) = (1 − 𝑝)𝛽Γ (1 −
1

𝛼
) ∑ 𝑝𝑗

∞

𝑗=0

(𝑗 + 1)
1
𝛼 

𝑉(𝑋) = (1 − 𝑝)𝛽2Γ (1 −
2

𝛼
) ∑ 𝑝𝑗

∞

𝑗=0

(𝑗 + 1)
2
𝛼 − [(1 − 𝑝)𝛽Γ (1 −

1

𝛼
) ∑ 𝑝𝑗

∞

𝑗=0

(𝑗 + 1)
1
𝛼]

2

 

𝑉(𝑋) = (1 − 𝑝)𝛽2 {Γ (1 −
2

𝛼
) ∑ 𝑝𝑗

∞

𝑗=0

(𝑗 + 1)
2
𝛼 − (1 − 𝑝) [Γ (1 −

1

𝛼
) ∑ 𝑝𝑗

∞

𝑗=0

(𝑗 + 1)
1
𝛼]

2

} 

3.1. Mixture of Two IWGD and Properties 

Various mixture of distributions have been discussed in past by number of authors. Maclachlan 

and Krishnan [14], Everitt and Hand [8], Al-Hussaini and Sultan [3], Maclachlan and Peel [15]. They 

also discussed the properties of mixture distribution and have found them useful in many complex 

problems. The density function of mixture of two IWG distributions is called Mixed Inverse Weibull 

Geometric (MIWG) distribution and is given by 

𝑓𝑀𝐼𝑊𝐺(𝑥; 𝜃) = 𝜆1𝑓1(𝑥, 𝜃1) + 𝜆2𝑓2(𝑥, 𝜃2) 
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𝑓𝑀𝐼𝑊𝐺(𝑥; 𝜃) = ∑ 𝜆𝑟𝑓𝑟(𝑥, 𝜃𝑟)

2

𝑘=1

 

where, 

𝜃1 = (𝑝1, 𝛼1, 𝛽1)𝑇     𝑎𝑛𝑑    𝜃2 = (𝑝2, 𝛼2, 𝛽2)𝑇,   𝑓𝑟(𝑥, 𝜃𝑟) corresponds to rth component of the mixture 

and is given by  

𝑓𝑟(𝑥, 𝜃𝑟) = 𝛼𝑟𝛽𝑟
𝛼(1 − 𝑝𝑟)𝑥−(𝛼𝑟+1)𝑒

−(
𝛽𝑟
𝑥

)
𝛼𝑟

{1 − 𝑝𝑟𝑒
−(

𝛽𝑟
𝑥

)
𝛼𝑟

}

−2

;  𝑥, 𝛼𝑟 , 𝛽𝑟 > 0  𝑎𝑛𝑑 𝑝𝑟𝜖(0,1) 

and    𝜆1 + 𝜆2 = 1. 

Properties of MIGWD  

The Survival function and Hazard rate function of MIWG distribution are 

𝑆𝑀𝐼𝑊𝐺(𝑥, 𝜃) = ∑ 𝜆𝑟 (
1 − 𝑒

−(
𝛽𝑟
𝑥

)
𝛼𝑟

1 − 𝑝𝑟𝑒
−(

𝛽𝑟
𝑥

)
𝛼𝑟 )

2

𝑟=1

                                                                         

ℎ𝑀𝐼𝑊𝐺(𝑥) = ∑ (𝜆𝑟𝛼𝑟𝛽𝑟
𝛼(1 − 𝑝𝑟)𝑥−(𝛼𝑟+1)𝑒

−(
𝛽𝑟
𝑥

)
𝛼𝑟

{1 − 𝑝𝑟𝑒
−(

𝛽𝑟
𝑥

)
𝛼𝑟

}

−2

)

2

𝑘=1

× (∑ 𝜆𝑟 (
1 − 𝑒

−(
𝛽𝑟
𝑥

)
𝛼𝑟

1 − 𝑝𝑟𝑒
−(

𝛽𝑟
𝑥

)
𝛼𝑟 )

2

𝑟=1

)

−1

 

The 𝑘𝑡ℎ order moment around zero for MIGWD can be written as 

𝐸(𝑋𝑘) = ∑ ∫ 𝑥𝑘𝜆𝑟𝛼𝑟𝛽𝑟
𝛼(1 − 𝑝𝑟)𝑥−(𝛼𝑟+1)𝑒

−(
𝛽𝑟
𝑥

)
𝛼𝑟

{1 − 𝑝𝑟𝑒
−(

𝛽𝑟
𝑥

)
𝛼𝑟

}

−2

𝑑𝑥

∞

0

 

2

𝑟=1

 

𝐸(𝑋𝑘) = ∑ 𝜆𝑟(1 − 𝑝𝑟)𝛽𝑟
𝑘Γ (1 −

𝑘

𝛼𝑟
) ∑ 𝑝𝑟

𝑗

∞

𝑗=0

(𝑗 + 1)
𝑘

𝛼𝑟

2

𝑟=1

 

3.2. Estimation of Parameters 

Let  𝑥1, 𝑥2, … , 𝑥𝑛  be a random sample from IGWD with unknown parameter vector  𝜙 =

(𝑝, 𝛼, 𝛽)𝑇. The log likelihood for 𝑙 = 𝑙(𝜙; 𝑥) for 𝜙 is 

              𝑙 = 𝑛[𝑙𝑜𝑔𝛼 + 𝛼𝑙𝑜𝑔𝛽 + 𝑙𝑜𝑔(1 − 𝑝)] − (𝛼 + 1) ∑ 𝑙𝑜𝑔𝑥𝑖

𝑛

𝑖=1

− ∑ (
𝛽

𝑥𝑖
)

𝛼𝑛

𝑖=1

− 2 ∑ 𝑙𝑜𝑔 (1 − 𝑝𝑒
(

𝛽
𝑥𝑖

)
𝛼

)

𝑛

𝑖=1

                                                                                    (7) 
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The score function 𝑈(𝜙) = (
𝜕𝑙

𝜕𝑝
,

𝜕𝑙

𝜕𝛼
 ,

𝜕𝑙

𝜕𝛽
 )

𝑇

 has components  

𝜕𝑙

𝜕𝑝
= −𝑛(1 − 𝑝)−1 + 2 ∑ 𝑒

(
𝛽
𝑥𝑖

)
𝛼𝑛

𝑖=1

[1 − 𝑝𝑒
(

𝛽
𝑥𝑖

)
𝛼

]

−1

 

𝜕𝑙

𝜕𝛼
= 𝑛𝛼−1 + 𝑛𝑙𝑜𝑔𝛽 − ∑ 𝑙𝑜𝑔𝑥𝑖

𝑛

𝑖=1

− ∑ (
𝛽

𝑥𝑖
)

𝛼𝑛

𝑖=1

𝑙𝑜𝑔 (
𝛽

𝑥𝑖
) {1 + 2𝑝𝑒

(
𝛽
𝑥𝑖

)
𝛼

[1 − 𝑝𝑒
(

𝛽
𝑥𝑖

)
𝛼

]

−1

 } 

 

𝜕𝑙

𝜕𝛽
= 𝑛𝛼𝛽−1 − 𝛼𝛽𝛼−1 ∑ 𝑥𝑖

−𝛼 {1 + 2𝑝𝑒
(

𝛽
𝑥𝑖

)
𝛼

[1 − 𝑝𝑒
(

𝛽
𝑥𝑖

)
𝛼

]

−1

 }

𝑛

𝑖=1

 

The maximum likelihood estimate (MLE) 𝜙̂  of 𝜙  can be obtained by solving non-linear 

equations 𝑈(𝜙̂) = 0. These equations cannot be solved analytically but statistical software can be used 

to solve them numerically, for example, through the R-language or any iterative methods such as the NR 

(Newton-Raphson),BFGS (Broyden-Fletcher-Goldfarb-Shanno), BHHH (Berndt-Hall-Hall-Hausman), 

NM (Nelder-Mead), L-BFGS-B (Limited-Memory Quasi-Newton code for Bound-Constrained 

Optimization) and SANN (Simulated-Annealing).  

Censored Case:  

Censoring is the condition in which value of the observed value of some variables is unknown. 

In reliability studies particularly in survival analysis censoring occurs when the information about the 

survivals time of the observations under study is incomplete and therefore we are generally encountered 

with censored data. Let the independent random variables 𝑍𝑖  𝑎𝑛𝑑 𝐶𝑖 respectively denote the lifetime of 

the 𝑖𝑡ℎ individual and the censoring time and let 𝑡𝑖 = 𝑚𝑖𝑛(𝑍𝑖 , 𝐶𝑖) for 𝑖 = 1,2,3, … , 𝑛. The distribution 

of  𝐶𝑖  does not depend on the unknown parameters of  𝑍𝑖 , where each  𝑍𝑖  follows the IGWD with 

parameters 𝜙 = (𝑝, 𝛼, 𝛽)𝑇.  

For censored case, while writing the likelihood function the data set splits into two parts one 

corresponds to censored data and another corresponds to those observations that are not censored. Let 

the sets of censored and uncensored observation respectively be denoted by C and F, and r the no of 

failures. The likelihood function for censored case can be written as 

𝑙 = ∏ 𝑓(𝑡𝑖)

𝑖∈𝐹

× ∏ 𝑆(𝑡𝑖)

𝑖∈𝐶

 

where, 𝑓(𝑡𝑖) and  𝑆(𝑡𝑖) are the density function and survival function of the IGWD, respectively. 

Hence from (3) and (4) the log likelihood for the IGWD can be written as 
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𝑙 = 𝑛[𝑙𝑜𝑔𝛼 + 𝛼𝑙𝑜𝑔𝛽 + 𝑙𝑜𝑔(1 − 𝑝)] − (𝛼 + 1) ∑ 𝑙𝑜𝑔𝑡𝑖

𝑖∈𝐹

− ∑ (
𝛽

𝑡𝑖
)

𝛼

𝑖∈𝐹

− 2 ∑ 𝑙𝑜𝑔 (1 − 𝑝𝑒
(

𝛽
𝑡𝑖

)
𝛼

)

𝑖∈𝐹

+ ∑ 𝑙𝑜𝑔 (1 − 𝑒
(

𝛽
𝑡𝑖

)
𝛼

)

𝑖∈𝐶

− ∑ 𝑙𝑜𝑔 (1 − 𝑝𝑒
(

𝛽
𝑡𝑖

)
𝛼

)

𝑖∈𝐶

 

The score function 𝑈(𝜙) = (
𝜕𝑙

𝜕𝑝
,

𝜕𝑙

𝜕𝛼
 ,

𝜕𝑙

𝜕𝛽
 )

𝑇

 has components  

𝜕𝑙

𝜕𝑝
= −𝑛(1 − 𝑝)−1 + 2 ∑ 𝑒

(
𝛽
𝑡𝑖

)
𝛼

[1 − 𝑝𝑒
(

𝛽
𝑥𝑖

)
𝛼

]

−1

𝑖∈𝐹

+ ∑ 𝑒
(

𝛽
𝑡𝑖

)
𝛼

[1 − 𝑝𝑒
(

𝛽
𝑡𝑖

)
𝛼

]

−1

𝑖∈𝐶

 

𝜕𝑙

𝜕𝛼
= 𝑛𝛼−1 + 𝑛𝑙𝑜𝑔𝛽 − ∑ 𝑙𝑜𝑔𝑡𝑖

𝑖∈𝐹

− ∑ 𝑙𝑜𝑔 (
𝛽

𝑡𝑖
) {1 + 2𝑝𝑒

(
𝛽
𝑡𝑖

)
𝛼

[1 − 𝑝𝑒
(

𝛽
𝑡𝑖

)
𝛼

]

−1

 } (
𝛽

𝑡𝑖
)

𝛼

𝑖∈𝐹

− ∑
(1 − 𝑝) (

𝛽
𝑡𝑖

)
𝛼

𝑒
(

𝛽
𝑡𝑖

)
𝛼

𝑙𝑜𝑔 (
𝛽
𝑡𝑖

)

(1 − 𝑒
(

𝛽
𝑡𝑖

)
𝛼

) (1 − 𝑝𝑒
(

𝛽
𝑡𝑖

)
𝛼

)𝑖∈𝐶

 

𝜕𝑙

𝜕𝛽
= 𝑛𝛼𝛽−1 − 𝛼𝛽𝛼−1 ∑ {1 + 2𝑝𝑒

(
𝛽
𝑡𝑖

)
𝛼

[1 − 𝑝𝑒
(

𝛽
𝑡𝑖

)
𝛼

]

−1

 } 𝑡𝑖
−𝛼

𝑖∈𝐹

− 𝛼𝛽𝛼−1 ∑
(1 − 𝑝)𝑒

(
𝛽
𝑡𝑖

)
𝛼

𝑡𝑖
−𝛼

(1 − 𝑒
(

𝛽
𝑡𝑖

)
𝛼

) (1 − 𝑝𝑒
(

𝛽
𝑡𝑖

)
𝛼

)𝑖∈𝐶

 

The maximum likelihood estimate (MLE) 𝜙̂  of 𝜙  can be obtained by solving non-linear 

equations 𝑈(𝜙̂) = 0 using numerical methods.  

4. Simulations and Applications 

Estimation Based on simulations: 

For checking the theoretical results, we simulate data by generating observations from IGWD 

for different sample sizes with number of repetitions 10,000 and values of parameters are chosen 

arbitrary. The values of the parameters are estimated using quasi- Newton method in R. the estimates of 

parameters with corresponding sample sizes are given in Table 1. 
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Table 1: Estimates of parameters for IGWD 

 

𝒏 𝜶 𝜷 𝒑 𝜶̂ 𝜷̂ 𝒑̂ 

 

 

 

 

50 

1.1 0.02 0.2 1.2213 0.0045 0.9967 

1.2 0.02 0.3 1.4675 0.1046 0.9199 

1.3 0.02 0.4 1.1980 0.0061 0.9927 

1.4 0.03 0.5 1.5226 0.0408 0.9760 

1.4 0.04 0.6 1.5990 0.0945 0.9448 

1.4 0.05 0.7 1.4289 0.0584 0.9756 

1.5 0.06 0.8 1.6468 0.0473 0.9895 

1.6 0.07 0.8 1.4327 0.0534 0.9776 

1.7 0.08 0.8 1.6693 0.0404 0.9911 

 

 

 

 

100 

1.1 0.02 0.2 1.2942 0.0107 0.9944 

1.2 0.02 0.3 1.4743 0.0146 0.9949 

1.3 0.02 0.4 1.4067 0.0233 0.9928 

1.4 0.03 0.5 1.3589 0.0219 0.9871 

1.4 0.04 0.6 1.4601 0.0392 0.9862 

1.4 0.05 0.7 1.3314 0.0118 0.9946 

1.5 0.06 0.8 1.5888 0.0384 0.9838 

1.6 0.07 0.8 1.6331 0.0224 0.9956 

1.7 0.08 0.8 1.5073 0.0225 0.9922 

 

 

 

 

250 

1.1 0.02 0.2 1.3453 0.0152 0.9934 

1.2 0.02 0.3 1.3640 0.0150 0.9945 

1.3 0.02 0.4 1.3658 0.0103 0.9960 

1.4 0.03 0.5 1.4632 0.0165 0.9953 

1.4 0.04 0.6 1.4149 0.0173 0.9927 

1.4 0.05 0.7 1.4218 0.0347 0.9833 

1.5 0.06 0.8 1.4723 0.0250 0.9908 

1.6 0.07 0.8 1.4093 0.0140 0.9958 

1.7 0.08 0.8 1.4261 0.0145 0.9956 

 

 

 

 

500 

1.1 0.02 0.2 1.4530 0.0106 0.9972 

1.2 0.02 0.3 1.3850 0.0132 0.9952 

1.3 0.02 0.4 1.3946 0.0136 0.9955 

1.4 0.03 0.5 1.3319 0.0111 0.9948 

1.4 0.04 0.6 1.4373 0.0138 0.9960 

1.4 0.05 0.7 1.4242 0.0130 0.9962 

1.5 0.06 0.8 1.4857 0.0114 0.9972 

1.6 0.07 0.8 1.4481 0.0128 0.9967 

1.7 0.08 0.8 1.4729 0.0202 0.9931 
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4.1. Real Data Illustration 

In this section we compare the results of fitting the IWGD, IWD, IEGD, IED and IRD to the data 

set studied by Meeker and Escobar [16], which gives the times of failure and running times for a sample 

of devices from an eld-tracking study of a larger system. At a certain point in time, 30 units were installed 

in normal service conditions. Two causes of failure were observed for each unit that failed: the failure 

caused by normal product wear and failure caused by an accumulation of randomly occurring damage 

from power-line voltage spikes during electric storms. The times are:  

2.75, 0.13, 1.47, 0.23, 1.81, 0.30, 0.65, 0.10, 3.00, 1.73, 1.06, 3.00, 3.00, 2.12, 3.00, 3.00, 3.00, 0.02, 

2.61, 2.93, 0.88, 2.47, 0.28, 1.43, 3.00, 0.23, 3.00, 0.80, 2.45, 2.66. 

In order to compare the distribution models, we consider criteria like −2log(L), AIC (Akaike 

Information Criterion), BIC (Bayesian Information Criterion), CAIC (Consistant Akaike Information 

Criterion) and HQIC (Hannan-Quinn Information Criterion) for the data set. The better distribution 

corresponds to smaller −2l, AIC, CAIC and HQIC. 

The MLE for IWGD, IWD, IEGD, IED and IRD are given table 1 along with Akaike Information 

Criterion, Bayesian Information Criterion, Hannan-Quinn Information Criterion and Consistent Akaike 

Information Criterion for the data set. 

Table 2 shows parameter MLEs to each one of the two fitted distributions for data set, values 

of−2𝑙𝑜𝑔(𝐿), AIC, CAIC and HQIC. The values in Table 1 indicate that the IWGD model performs 

significantly better than its sub-models used here for fitting data set.  

 

Table 2: The ML estimates, standard error, AIC, BIC and CAIC of the models based on data set 

Model -2LL Estimates St. Error AIC BIC CAIC HQIC 

 

IWGD 

 

325.1060 

𝛼̂ = 1.50414 

𝛽̂ = 1.02509 

𝑝̂ =  0.98748  

0.191013 

 0.718233 

0.015564 

 

331.1060 

 

335.9388 

 

331.7917 

 

332.8098 

IWD 335.5175 𝛼̂ = 0.72031 

𝛽̂ = 11.59950 

0.079020 

2.301144 

339.5175 342.7393 339.8508 340.6533 

IEGD 330.699  𝛽̂ =  3.08797 

𝑝̂ = 0.84201 

1.362015 

0.091138 

334.699  337.9208 335.0323 335.8348 

IED 346.6261 𝛽̂ = 8.34602 0.987354 348.6261 350.237 348.7342 349.194 

IRD  507.971 𝛽̂ =  4.15026 0.237946 509.971 511.5819 510.0791 510.5389 
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In the second example we considered the censored provided by David W. Hosmer and Stanley 

Lemeshow [5]. The survival times in months of 100 HIV patients are given below and * indicates that 

the data is censored. 

 

5, 6*, 8, 3, 22, 1*, 7, 9, 3, 12, 2*, 12, 1, 15, 34, 1, 4, 19*, 3*, 2, 2*, 6, 60*, 7*, 60*,11, 2*, 5, 4*, 1*, 13, 

3*, 2*, 1*, 30,  7*, 4*, 8*, 5*, 10, 2*, 9*, 36, 3*, 9*, 3*, 35, 8*, 1*, 5*, 11, 56*, 2*, 3*, 15,  1*, 10, 1*, 

7*, 3*, 3*, 2*, 32, 3*, 10*, 11, 3*, 7*, 5*, 31,  5*, 58, 1*, 2*, 1, 3*, 43, 1*, 6*,53, 14,  4*, 54, 1*, 1*, 

8*, 5*, 1*, 1*, 2*, 7*, 1*, 10, 24*, 7*, 12*, 4*, 57, 1*, 12*. 

The MLE for IWGD, IWD, IEGD, IED and IRD are given table 3 along with Akaike Information 

Criterion, Bayesian Information Criterion, Hannan-Quinn Information Criterion and Consistent Akaike 

Information Criterion for the censored data. 

 

Table 3: The ML estimates, standard error, AIC, BIC and CAIC of the models based on censored data 

Model -2LL Estimates St. Error AIC BIC CAIC HQIC 

 

IWGD 

 

104.1385 

𝛼̂ = 1.39976 

𝛽̂ =  0.02564 

𝑝̂ =  0.99607 

0.18206 

0.01554 

0.00226 

 

110.1385 

 

114.3421 

 

 

110.9956 

 

 

111.8423 

 

IWD 120.5836 𝛼̂ =  0.62515 

𝛽̂ = 0.53990 

0.07612 

0.16813 

124.5836 127.3860 

 

124.9974 

 

125.7194 

IEGD 108.7143 𝛽̂ =  0.02658 

𝑝̂ =  0.97862 

0.04016 

0.03318 

112.7143 

 

115.5167 

 

113.1281 

 

113.8501 

IED 141.2617 𝛽̂ = 0.31223 0.05700 143.2617 144.6629 143.395 143.8296 

IRD 306.2023 𝛽̂ = 0.10481 0.00956 308.2023 309.6035 308.3356 308.7702 

 

Table 3 shows that values of−2𝑙𝑜𝑔(𝐿), AIC, CAIC and HQIC are lowest for IWGD. So, we can 

conclude that IWGD model performs significantly better than its sub-models used here for fitting 

censored data set.  

5. Conclusion 

Here, we propose a new model, the so-called the Inverse Weibull Geometric Distribution which 

extends the Inverse Weibull distribution, Inverse Exponential Geometric Distribution, Inverse 

Exponential Distribution and Inverse Rayleigh Distribution in the analysis of data with real support. A 

pronounced reason for generalizing a standard distribution is because the generalized form extend larger 
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flexibility in modelling real data. We derive expressions for the moments and for the moment generating 

function. The estimation of parameters is approached by the method of maximum likelihood. We 

consider the likelihood ratio statistic to compare the model with its baseline model. An application to 

real data show that the new distribution can be used adequately to provide better fits than the Inverse 

Weibull distribution, Inverse Exponential Geometric distribution, Inverse Exponential distribution and 

Inverse Rayleigh distribution.  
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