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Abstract: The present paper evaluated a new Eulerian integral associated with the product 

of two modified multivariable I-functions defined by Prasad [1], a generalized Lauricella 

function and the classes of multivariable polynomials with general arguments. The case 

concerning the Srivastava-Daoust polynomial [4] was studied as well and some remarks were 

given. 
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1. Introduction 

In this paper, we consider a general class of Eulerian integral concerning the product of two 

multivariable I-functions, defined by Prasad [1], the generalized hypergeometric function and the classes 

of multivariable polynomials. 

The generalized polynomials of multi-variables defined by Srivastava [3], is given in the 

following manner: 
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The multivariable I-function of r-variables defined by Prasad [1] generalized the multivariable 

function defined by Srivastava and Panda [6, 7]. It is defined in term of multiple Mellin-Barnes type 

integral: 

 

The defined integral of the above function, the existence and convergence conditions, see Y. N 

Prasad [1]. Throughout the present document, we assume that the existence and convergence conditions 

of the multivariable I-function. 

The condition for absolute convergence of multiple Mellin-Barnes type contour (1.5) can be 

obtained by extension of the corresponding conditions for multivariable H-function given by as: 
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The complex numbers 𝑧𝑖  are not zero. Throughout this document, we assume the existence and 

absolute convergence conditions of the multivariable I-function. 

We may establish the asymptotic expansion in the following convenient form: 

 

 

 

Consider a second multivariable I-function defined by Prasad [1] 

 

The defined integral of the above function, the existence and convergence conditions, see Y. N 

Prasad [1]. Throughout the present document, we assume that the existence and convergence conditions 

of the multivariable I-function. 
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The condition for absolute convergence of multiple Mellin-Barnes type contour (1.5) can be 

obtained by extension of the corresponding conditions for multivariable H-function given by as: 

 

The complex numbers 𝑧𝑖  are not zero. Throughout this document, we assume the existence and 

absolute convergence conditions of the multivariable I-function. 

We may establish the asymptotic expansion in the following convenient form: 

 

 

2. Integral Representation of Generalized Lauricella Function of Several Variables 

 
In order to evaluate a number of integrals of multivariable I-functions, we first establish the 

formula: 
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Integrating term by term with the help of the integral given by Saigo and Saxena [2, page.93, eq. (3.2)] 

and applying the definition of the generalized Lauricella function [4, page.454]. 

3. Eulerian Integral 

In this section, we note: 
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We have the general Eulerian integral. 
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We obtain the I-function of r+s+k+l variables. 

Provided that 
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4. Srivastava-Daoust Polynomial 

 

 

 

We have the following integral. 
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under the same conditions and notations that (3.14) 

 

Remark: 

By the following similar procedure, the results of this document can be extended to product of 

any finite number of multivariable I-functions defined by Prasad [1], classes of multivariable 

polynomials defined by Srivastava and Garg [5] and class of multivariable polynomials defined by 

Srivastava [3]. 
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5. Conclusion 

In this paper we have evaluated a generalized Eulerian integral involving the product of two 

multivariable I-functions defined by Prasad [1], a class of multivariable polynomials defined by 

Srivastava and Garg [5] and a class of multivariable polynomials defined by Srivastava [3] with general 

arguments. The formulae established in this paper is very general nature. Thus, the results established in 

this research work would serve as a key formula from which, upon specializing the parameters, as many 

as desired results involving the special functions of one and several variables can be obtained. 
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