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1. Introduction 

In this paper, we are concerned with the following fractional integrodifferential equation in a 

Banach space 𝑋: 

𝑑𝛼𝑢(𝑡)

𝑑𝑡𝛼
+ 𝐴𝑢(𝑡) = 𝑓(𝑡, 𝑢(𝑡)) + ∫ ℎ (𝑡, 𝑠, 𝑢(𝑠), ∫ 𝑘(𝑠, 𝜏, 𝑢(𝜏))𝑑𝜏

𝑠

0

)

𝑡

0

𝑑𝑠,                                                     (1) 

𝑢(0) = 𝑢0,                                                                                                                                                   (2) 
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where 0 < 𝛼 ≤ 1, 𝑡 > 0. Let 𝐽 = [0, 𝑎] and let – 𝐴 is the infinitesimal generator of an analytic semigroup 

𝑄(𝑡), 𝑡 ≥ 0. Let 𝑓: 𝐽 × 𝑋 → 𝑋, ℎ: 𝐽 × 𝐽 × 𝑋 × 𝑋 → 𝑋, 𝑘: 𝐽 × 𝐽 × 𝑋 → 𝑋 be given nonlinear operators. 

This type of research has been considered in Balachandran and Chandrasekaran [1], when the 

equation (1) is given with conventional (Classical) derivatives, also as many works [2, 3, 4, 5] and 

references cited therein. Fractional derivatives have been extensively applied in many fields, for example 

in Probability, Viscoelasticity, Electronics, Economics, mechanics as well as Biology. In recent years, 

they have been an object of investigations with much increasing interest. For more details on this theory 

and application, we refer the monographs of Lakshmikantham et al. [6], Miler and Ross [7], Podlubny 

[8] and the papers of [9, 10, 11, 12]. 

In this paper, we generalize the results of [1, 20]. The rest of this paper is organized as follows. 

In section 2, we give some preliminaries. In section 3, we prove our main theorem for (1) – (2). 

2. Preliminaries 

Here we assume that – 𝐴 is the infinitesimal generator of a bounded analytic semigroup of linear 

operator in a Banach space 𝑋. Hence for convenience, we suppose that ‖𝑄(𝑡)‖ ≤ 𝑀 for 𝑡 ≥ 0 and 0 ∈

𝜌(−𝐴), where 𝜌(−𝐴) is the resolvent set of – 𝐴. We define the fractional power 𝐴−𝑞 by  

𝐴−𝑞 =
1

Γ(𝑞)
∫ (𝑡)𝑞−1𝑄(𝑡)𝑑𝑡, 𝑞 > 0.

∞

0

 

For 0 < 𝑞 ≤ 1, 𝐴𝑞 is a closed linear invertible operator with domain 𝐷(𝐴𝑞) ⊃ 𝐷(𝐴) is dense in 

𝑋. The closedness of 𝐴𝑞 implies that 𝐷(𝐴𝑞), endowed with the graph norm of 𝐴𝑞,‖𝑢‖𝐷(𝐴) = ‖𝑢‖ +

‖𝐴𝑞𝑢‖, 𝑢 ∈ 𝐷(𝐴𝑞), is a Banach space. Since 𝐴𝑞 is invertible, and its graph norm |‖. ‖| is equivalent to 

the norm ‖𝑢‖𝑞 = ‖𝐴𝑞𝑢‖. Thus 𝐷(𝐴𝑞) equipped with the norm‖. ‖𝑞, is a Banach space, which we denote 

by 𝑋𝑞 .  Take 𝐽 = [0, 𝑎]. 

Following Gelfand and Shilov [13], we define fractional integral of order 𝛼 > 0 as 

𝐼𝑎
𝛼𝑓(𝑡) =

1

Γ(𝛼)
∫(𝑡 − 𝑠)𝛼−1𝑓(𝑠)𝑑𝑠,

𝑡

𝑎

 

also, the fractional derivative of the function 𝑓 of order 0 < 𝛼 < 1 as 

   
ta D


𝑓(𝑡) =
1

Γ(1−𝛼)

𝑑

𝑑𝑡
∫ 𝑓(𝑠)(𝑡 − 𝑠)−𝛼𝑑𝑠,

𝑡

𝑎
 

where 𝑓 is an abstract continuous function on the interval [𝑎, 𝑏] and Γ(𝛼) is the Gamma function, see 

[14]. 

Definition 1: By a solution of (1) – (2), we mean a function 𝑢 with values in 𝑋 such that: 
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(1) 𝑢 is continuous function on 𝐽 and 𝑢(𝑡) ∈ 𝐷(𝐴), 

(2) 
𝑑𝛼𝑢

𝑑𝑡𝛼  exists and continuous on (0, 𝑎), 0 < 𝛼 < 1, and 𝑢 satisfies (1) on  (0, 𝑎) and the initial 

condition (2).  

Using Gelfand-Shilov principle [13], it is suitable to rewrite equation (1), (2) in the form 

𝑢(𝑡) = 𝑢0 +
1

Γ(𝛼)
∫(𝑡 − 𝑠)𝛼−1 [𝑓(𝑠, 𝑢(𝑠)) − 𝐴𝑢(𝑠) + ∫ ℎ (𝑠, 𝜏, 𝑢(𝜏), ∫ 𝑘(𝜏, 𝜇, 𝑢(𝜇))𝑑𝜇

𝜏

0

) 𝑑𝜏

𝑠

0

] 𝑑𝑠

𝑡

0

(3) 

Remark 1: Let us take in the considered problem, the inhomogeneous part is equal to an abstract 

continuous function 𝐹(𝑡), then from (1) − (2), we have 

tD


𝑢(𝑡) + 𝐴𝑢(𝑡) = 𝐹(𝑡),                              (4) 

   𝑢(0) = 𝑢0.                                                 (5) 

According to [14, 15-19], we first apply the fractional integral on both sides of (4) and then using 

(5), we apply the Laplace transform on the new integral equations by considering a suitable one-sided 

stable probability density whose Laplace transform is given. Hence we can conclude that a solution of 

the problem (4) − (5) can be formally represented by
 

          𝑢(𝑡) = ∫ 𝜁𝛼(𝜃)𝑄(𝑡𝛼𝜃)𝑢0 𝑑𝜃

∞

0

+ 𝛼 ∫ ∫ 𝜃(𝑡 − 𝑠)𝛼−1

∞

0

𝑡

0

𝜁𝛼(𝜃)𝑄((𝑡 − 𝑠)𝛼𝜃)𝐹(𝑠)𝑑𝜃𝑑𝑠,          (6) 

where  

𝐹(𝑡) = 𝑓(𝑡, 𝑢(𝑡)) + ∫ ℎ (𝑡, 𝑠, 𝑢(𝑠), ∫ 𝑘(𝑠, 𝜏, 𝑢(𝜏))𝑑𝜏

𝑠

0

)

𝑡

0

𝑑𝑠 

and  𝜁𝛼 is a probability density function defined on (0, ∞) such that its Laplace transform is given by 

∫ 𝑒−𝜃𝑥

∞

0

𝜁𝛼(𝜃)𝑑𝜃 = ∑
(−𝑥)𝑗

Γ(1 + 𝛼𝑗)
, 0 < 𝛼 ≤ 1, 𝑥 > 0.

∞

𝑗=0

 

3. Existence Theorem 

To prove our main result we state the following lemma: 

Lemma 1: Let – 𝐴 be the infinitesimal generator of an analytic semigroup 𝑄(𝑡). If 0 ∈ 𝜌(𝐴) then 

(a) 𝑄(𝑡): 𝑋 → 𝐷(𝐴𝑞) for every 𝑡 > 0 and 𝑞 ≥ 0 

(b) For every 𝑢 ∈ 𝐷(𝐴𝑞), we have 𝑄(𝑡)𝐴𝑞𝑢 = 𝐴𝑞𝑄(𝑡)𝑢 
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(c) For every 𝑡 > 0 the operator 𝐴𝑞𝑄(𝑡) is bounded and ‖𝐴𝑞𝑄(𝑡)‖ ≤ 𝑀𝑞𝑡−𝑞 . 

For more details, see [21, section 2.6] 

Theorem 1: Assume that  

(i) – 𝐴 is the infinitesimal generator of a bounded analytic semigroup of linear operator 

𝑄(𝑡), 𝑡 > 0, in 𝑋. 

(ii) For 𝑞 ≥ 0, the fractional power 𝐴𝑞 satisfies ‖𝐴𝑞𝑄(𝑡)‖ ≤ 𝑀𝑞𝑡−𝑞 for 𝑡 > 0, where 𝑀𝑞 is a 

real constant. 

(iii) 0 ∈ 𝜌(−𝐴), the resolvent set. 

(iv) For an open subset D of 𝐽 × 𝑋𝑞 , 𝑓: 𝐷 → 𝑋 satisfies the condition, if for every (𝑡, 𝑢) ∈ 𝐷 

there is a neighborhood 𝑉 ⊂ 𝐷 and constants 𝐿 ≥ 0,0 < 𝜗 ≤ 1, such that 

‖𝑓(𝑡1, 𝑢1) − 𝑓(𝑡2, 𝑢2)‖ ≤ 𝐿(|𝑡1 − 𝑡2|𝜗 + ‖𝑢1 − 𝑢2‖𝑞)                                            (7) 

for all (𝑡𝑖, 𝑢𝑖) ∈ 𝑉, 𝑖 = 1,2. 

(v)  For an open subset E of 𝐽 × 𝐽 × 𝑋𝑞 × 𝑋𝑞, ℎ: 𝐸 → 𝑋 satisfies the condition, if for every 

(𝑡, 𝑠, 𝑢, 𝑣) ∈ 𝐸 there is a neighborhood 𝑈 ⊂ 𝐸 and constants 𝐿1 ≥ 0,0 < 𝜗 ≤ 1, such that 

‖ℎ(𝑡1, 𝑠1, 𝑢1, 𝑣1) − ℎ(𝑡2, 𝑠2, 𝑢2, 𝑣2)‖

≤ 𝐿1(|𝑡1 − 𝑡2|𝜗 + |𝑠1 − 𝑠2|𝜗+‖𝑢1 − 𝑢2‖𝑞+‖𝑣1 − 𝑣2‖𝑞)          (8) 

for all (𝑡𝑖, 𝑠𝑖, 𝑢𝑖 , 𝑣𝑖) ∈ 𝑈, 𝑖 = 1,2. 

(vi) For an open subset P of 𝐽 × 𝐽 × 𝑋𝑞, 𝑘: 𝑃 → 𝑋 satisfies the condition, if for every (𝑡, 𝑠, 𝑢) ∈

𝑃 there is a neighborhood 𝑊 ⊂ 𝑃 and constants 𝐿2 ≥ 0,0 < 𝜗 ≤ 1, such that 

‖𝑘(𝑡1, 𝑠1, 𝑢1) − 𝑘(𝑡2, 𝑠2, 𝑢2)‖ ≤ 𝐿2(|𝑡1 − 𝑡2|𝜗 + |𝑠1 − 𝑠2|𝜗+‖𝑢1 − 𝑢2‖𝑞)         (9) 

for all (𝑡𝑖, 𝑠𝑖, 𝑢𝑖) ∈ 𝑊, 𝑖 = 1,2. 

Then the Cauchy problem (1) – (2) has a unique local solution 𝑢 ∈ 𝐶([0, 𝑎): 𝑋) ∩ 𝐶1((0, 𝑎): 𝑋). 

Proof: Choose 𝑡∗ > 0 and 𝛿 > 0 such that estimates (7) – (9) hold on the sets 

𝑉 = {(𝑡, 𝑢): 0 ≤ 𝑡 ≤ 𝑡∗, ‖𝑢 − 𝑢0‖ ≤ 𝛿}, 

𝑈 = {(𝑡, 𝑠, 𝑢, 𝑣): 0 ≤ 𝑡, 𝑠 ≤ 𝑡∗, ‖𝑢 − 𝑢0‖ ≤ 𝛿, ‖𝑣 − 𝑣0‖ ≤ 𝛿}, 

and 𝑊 = {(𝑡, 𝑠, 𝑢): 0 ≤ 𝑡, 𝑠 ≤ 𝑡∗, ‖𝑢 − 𝑢0‖ ≤ 𝛿}, respectively. 

Let  

𝐵 = max
0≤𝑡<𝑎

‖𝑓(𝑡, 𝑢0)‖ 

and                                                          
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𝐻 = max
0≤𝑡,𝑠≤𝑡∗

‖ℎ (𝑡, 𝑠, 𝑢0, ∫ 𝑘(𝑠, 𝜏, 𝑢0)

𝑠

0

𝑑𝜏)‖ 

and choose 𝑎 such that for 0 ≤ 𝑡 < 𝑎, 

  ‖𝑄(𝑡𝛼𝜃) − 𝐼‖‖𝐴𝑞𝑢0‖ ≤
𝛿

2
                                                                   (10) 

and 

      0 < 𝑎 <  𝑚𝑖𝑛 {𝑡∗, [
𝛿

2
𝑀𝑞

−1(1 − 𝑞)(𝐿𝛿 + 𝐵 + 𝐿1𝛿𝑎 + 𝐿1𝐿2𝛿𝑎2 + 𝐻𝑎)−1]

1

𝛼(1−𝑞)

}.                      (11) 

Let 𝑌 be a Banach space 𝐶((0, 𝑎]: 𝑋) with usual supremum norm which we denote by ‖. ‖𝑌. Define a 

map 𝐹: 𝑌 → 𝑌 by 

𝐹𝑦(𝑡) = ∫ 𝜁𝛼(𝜃)𝑄(𝑡𝛼𝜃)𝐴𝑞𝑢0

∞

0

𝑑𝜃

+ 𝛼 ∫ ∫ 𝜃(𝑡 − 𝑠)𝛼−1

∞

0

𝑡

0

𝜁𝛼(𝜃)𝐴𝑞𝑄((𝑡 − 𝑠)𝛼𝜃) [𝑓(𝑠, 𝐴−𝑞𝑦(𝑠))

+ ∫ ℎ (𝑠, 𝜏, 𝐴−𝑞𝑦(𝜏), ∫ 𝑘(𝜏, 𝜇, 𝐴−𝑞𝑦(𝜇))𝑑𝜇

𝜏

0

) 𝑑𝜏

𝑠

0

] 𝑑𝜃𝑑𝑠.                                         (12) 

 

Since ∫ 𝜁𝛼(𝜃)𝑑𝜃 = 1,
∞

0
 for every 𝑦 ∈ 𝑌, 𝐹𝑌(0) = 𝐴𝑞𝑢0, Let 𝑆 be the nonempty closed and bounded 

subset of 𝑌 defined by 

𝑆 = {𝑦: 𝑦 ∈ 𝑌, 𝑦(0) = 𝐴𝑞𝑢0, ‖𝑦(𝑡) − 𝐴𝑞𝑢0‖ ≤ 𝛿}. 

For 𝑦 ∈ 𝑆, we have 

‖𝐹𝑦(𝑡) − 𝐴𝑞𝑢0‖ ≤ ‖

 
 
 
𝑄(𝑡𝛼𝜃) − 𝐼‖ ‖

 
 
 
𝐴𝑞𝑢0‖ + 

+𝛼 ∫ ∫ 𝜃(𝑡 − 𝑠)𝛼−1

∞

0

𝑡

0

𝜁𝛼(𝜃) ‖𝐴𝑞𝑄((𝑡 − 𝑠)𝛼𝜃)

 
 
 
‖ ‖

 
 
 
𝑓(𝑠, 𝐴−𝑞𝑦(𝑠)) − 𝑓(𝑠, 𝑢0)‖ 𝑑𝜃𝑑𝑠

+ 𝛼 ∫ ∫ 𝜃(𝑡 − 𝑠)𝛼−1𝜁𝛼(𝜃) ‖

 
 
 
𝐴𝑞𝑄((𝑡 − 𝑠)𝛼𝜃)‖

∞

0

𝑡

0

‖𝑓(𝑠, 𝑢0)‖𝑑𝜃𝑑𝑠 
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+𝛼 ∫ ∫ 𝜃

∞

0

𝑡

0

(𝑡 − 𝑠)𝛼−1𝜁𝛼(𝜃) ‖𝐴𝑞𝑄((𝑡 − 𝑠)𝛼𝜃)

 
 
 
‖ 

‖[∫ ℎ (𝑠, 𝜏, 𝐴−𝑞𝑦(𝜏), ∫ 𝑘(𝜏, 𝜇, 𝐴−𝑞𝑦(𝜇))𝑑𝜇

𝜏

0

) 𝑑𝜏 − ∫ ℎ (𝑠, 𝜏, 𝑢0, ∫ 𝑘(𝜏, 𝜇, 𝑢0)𝑑𝜇

𝜏

0

) 𝑑𝜏

𝑠

0

𝑠

0

]‖ 𝑑𝜃𝑑𝑠 

+𝛼 ∫ ∫ 𝜃

∞

0

𝑡

0

(𝑡 − 𝑠)𝛼−1𝜁𝛼(𝜃) ‖

 
 
 
𝐴𝑞𝑄((𝑡 − 𝑠)𝛼𝜃)‖ ‖∫ ℎ (𝑠, 𝜏, 𝑢0, ∫ 𝑘(𝜏, 𝜇, 𝑢0)𝑑𝜇

𝜏

0

) 𝑑𝜏

𝑠

0

‖ 𝑑𝜃𝑑𝑠 

Since ∫ 𝜃1−𝑞∞

0
𝜁𝛼(𝜃)𝑑𝜃 ≤ 1, so by using Lemma 1 (c), equations (10) and (11), above inequality gives 

‖𝐹𝑦(𝑡) − 𝐴𝑞𝑢0‖ ≤
𝛿

2
+ 𝑀𝑞(1 − 𝑞)−1{𝐿𝛿 + 𝐵 + 𝐿1𝛿𝑎 + 𝐿1𝐿2𝛿𝑎2 + 𝐻𝑎}𝑎𝛼(1−𝑞) ≤ 𝛿. 

Therefore, 𝐹 maps 𝑆 into itself. Moreover, if 𝑦1, 𝑦2 ∈ 𝑆, then 

‖𝐹𝑦1(𝑡) − 𝐹𝑦2(𝑡)‖ ≤ 𝛼 ∫ ∫ 𝜃(𝑡 − 𝑠)𝛼−1𝜁𝛼(𝜃) ‖

 
 
 
𝐴𝑞𝑄((𝑡 − 𝑠)𝛼𝜃)‖

∞

0

𝑡

0

 

‖

 
 
 
𝑓(𝑠, 𝐴−𝑞𝑦1(𝑠)) − 𝑓(𝑠, 𝐴−𝑞𝑦2(𝑠))‖ 𝑑𝜃𝑑𝑠 + 𝛼 ∫ ∫ 𝜃(𝑡 − 𝑠)𝛼−1𝜁𝛼(𝜃) ‖

 
 
 
𝐴𝑞𝑄((𝑡 − 𝑠)𝛼𝜃)‖

∞

0

𝑡

0

 

‖[∫ ℎ (𝑠, 𝜏, 𝐴−𝑞𝑦1(𝜏), ∫ 𝑘(𝜏, 𝜇, 𝐴−𝑞𝑦1(𝜇))𝑑𝜇

𝜏

0

)

𝑠

0

− ∫ ℎ (𝑠, 𝜏, 𝐴−𝑞𝑦2(𝜏), ∫ 𝑘(𝜏, 𝜇, 𝐴−𝑞𝑦2(𝜇))𝑑𝜇

𝜏

0

) 𝑑𝜏

𝑠

0

]‖ 𝑑𝜃𝑑𝑠 

≤ 𝑀𝑞𝑎𝛼(1−𝑞)(1 − 𝑞)−1𝐿‖𝑦1 − 𝑦2‖𝑌 + 𝑀𝑞𝑎𝛼(1−𝑞)(1 − 𝑞)−1𝐿1[(‖𝑦1 − 𝑦2‖𝑌 + 𝐿2‖𝑦1 − 𝑦2‖𝑌𝑎)𝑎] 

≤ 𝑀𝑞𝑎𝛼(1−𝑞)(1 − 𝑞)−1[𝐿 + 𝐿1(1 + 𝐿2𝑎)𝑎]‖𝑦1 − 𝑦2‖𝑌 

≤
1

2
‖𝑦1 − 𝑦2‖𝑌,                                                                                                                            

which implies that 

‖𝐹𝑦1 − 𝐹𝑦2‖𝑌 ≤
1

2
‖𝑦1 − 𝑦2‖𝑌. 



Int. J. Modern Math. Sci. 2014, 11(2):108-117  

       

Copyright © 2014 by Modern Scientific Press Company, Florida, USA 

114 

By the contraction mapping theorem, mapping 𝐹 has a unique fixed point 𝑦 ∈ 𝑆. This fixed point satisfies 

the integral equation 

𝑦(𝑡) = ∫ 𝜁𝛼(𝜃)𝑄(𝑡𝛼𝜃)𝐴𝑞𝑢0𝑑𝜃 + 𝛼 ∫ ∫ 𝜃(𝑡 − 𝑠)𝛼−1𝜁𝛼(𝜃)𝐴𝑞𝑄((𝑡 − 𝑠)𝛼𝜃)

∞

0

𝑡

0

∞

0

 

[𝑓(𝑠, 𝐴−𝑞𝑦(𝑠)) + ∫ ℎ (𝑠, 𝜏, 𝐴−𝑞𝑦(𝜏), ∫ 𝑘(𝜏, 𝜇, 𝐴−𝑞𝑦(𝜇))𝑑𝜇

𝜏

0

) 𝑑𝜏

𝑠

0

] 𝑑𝜃𝑑𝑠.                                   (13) 

From (7), (8) and the continuity of 𝑦 it follows that 

𝑡 → 𝑓(𝑡, 𝐴−𝑞𝑦(𝑡)) 

and  

𝑡 → ℎ (𝑡, 𝑠, 𝐴−𝑞𝑦(𝑠), ∫ 𝑘(𝑠, 𝜏, 𝐴−𝑞𝑦(𝜏))𝑑𝜏

𝑠

0

) 

are continuous on [0, 𝑎], and, hence, there exist constants 𝑁1 and 𝑁2 such that 

   ‖𝑓(𝑡, 𝐴−𝑞𝑦(𝑡))‖ ≤ 𝑁1                                (14) 

and 

                                ‖ℎ (𝑡, 𝑠, 𝐴−𝑞𝑦(𝑠), ∫ 𝑘(𝑠, 𝜏, 𝐴−𝑞𝑦(𝜏))𝑑𝜏

𝑠

0

)‖ ≤ 𝑁2.                                                  (15) 

By using the same method as in [15, Theorem 3.2], we can prove that 𝑦(𝑡) is locally H�̈�lder continuous 

on (0, 𝑎]. Then there exist a constant 𝐶 such that for every 𝑡′ > 0, we have 

‖𝑦(𝑡) − 𝑦(𝑠)‖ ≤ 𝐶|𝑡 − 𝑠|𝛾, 

for all 0 ≤ 𝑡′ ≤ 𝑡, 𝑠 ≤ 𝑎. The local H�̈�lder continuity of 𝑡 → 𝑓(𝑡, 𝐴−𝑞𝑦(𝑡)) follows from 

‖𝑓(𝑡, 𝐴−𝑞𝑦(𝑡)) − 𝑓(𝑠, 𝐴−𝑞𝑦(𝑠))‖ ≤ 𝐿(|𝑡 − 𝑠|𝜗 + ‖𝑦(𝑡) − 𝑦(𝑠)‖) ≤ 𝐶1(|𝑡 − 𝑠|𝜗 + |𝑡 − 𝑠|𝛾) 

for some 𝐶1 > 0 and the local H�̈�lder continuity of  

𝑡 → ℎ (𝑡, 𝑠, 𝐴−𝑞𝑦(𝑠), ∫ 𝑘(𝑠, 𝜏, 𝐴−𝑞𝑦(𝜏))𝑑𝜏

𝑠

0

) 

follows from  
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‖ℎ (𝑡, 𝑠, 𝐴−𝑞𝑦(𝑠), ∫ 𝑘(𝑠, 𝜏, 𝐴−𝑞𝑦(𝜏))𝑑𝜏

𝑠

0

) − ℎ (𝑡, 𝜇, 𝐴−𝑞𝑦(𝜇), ∫ 𝑘(𝜇, 𝜙, 𝐴−𝑞𝑦(ϕ))𝑑𝜙

𝑠

0

)‖

≤ 𝐿1{|𝑠 − 𝜇|𝜗 + ‖𝑦(𝑠) − 𝑦(𝜇)‖ + 𝐿2(|𝑠 − 𝜇|𝜗 + |𝜏 − 𝜙|𝜗 + ‖𝑦(𝜏) − 𝑦(𝜙)‖)𝑎} 

≤ 𝐿1{|𝑠 − 𝜇|𝜗 + |𝑠 − 𝜇|𝛾 + 𝐿3(|𝑠 − 𝜇|𝜗 + |𝜏 − 𝜙|𝜗 + |𝜏 − 𝜙|𝛾)𝑎} 

for some 𝐿3 > 0. Let 𝑦 be a solution of (13). Consider the inhomogeneous initial value problem  

𝑑𝛼𝑢(𝑡)

𝑑𝑡𝛼
+ 𝐴𝑢(𝑡) = 𝑓(𝑡, 𝐴−𝑞𝑦(𝑡)) + ∫ ℎ (𝑡, 𝑠, 𝐴−𝑞𝑦(𝑠), ∫ 𝑘(𝑠, 𝜏, 𝐴−𝑞𝑦(𝜏))𝑑𝜏

𝑠

0

)

𝑡

0

𝑑𝑠                           (16) 

 𝑢(0) = 𝑢0.                                                               (17) 

This problem has a unique solution 𝑢 ∈ 𝐶1((0, 𝑎]: 𝑋) [21], which is given by 

𝑢(𝑡) = ∫ 𝜁𝛼(𝜃)𝑄(𝑡𝛼𝜃)𝑢0

∞

0

𝑑𝜃

+ 𝛼 ∫ ∫ 𝜃(𝑡 − 𝑠)𝛼−1

∞

0

𝑡

0

𝜁𝛼(𝜃)𝑄((𝑡 − 𝑠)𝛼𝜃) [𝑓(𝑠, 𝐴−𝑞𝑦(𝑠))

+ ∫ ℎ (𝑠, 𝜏, 𝐴−𝑞𝑦(𝜏), ∫ 𝑘(𝜏, 𝜇, 𝐴−𝑞𝑦(𝜇))𝑑𝜇

𝜏

0

) 𝑑𝜏

𝑠

0

] 𝑑𝜃𝑑𝑠.                                         (18) 

for 𝑡 > 0, each term of (18) belongs to 𝐷(𝐴) and a fortiori in 𝐷(𝐴𝑞). Operating on both sides of (18) 

with 𝐴𝑞 we find that 

𝐴𝑞𝑢(𝑡) = ∫ 𝜁𝛼(𝜃)𝑄(𝑡𝛼𝜃)𝐴𝑞𝑢0

∞

0

𝑑𝜃

+ 𝛼 ∫ ∫ 𝜃(𝑡 − 𝑠)𝛼−1

∞

0

𝑡

0

𝜁𝛼(𝜃)𝐴𝑞𝑄((𝑡 − 𝑠)𝛼𝜃) [𝑓(𝑠, 𝐴−𝑞𝑦(𝑠))

+ ∫ ℎ (𝑠, 𝜏, 𝐴−𝑞𝑦(𝜏), ∫ 𝑘(𝜏, 𝜇, 𝐴−𝑞𝑦(𝜇))𝑑𝜇

𝜏

0

) 𝑑𝜏

𝑠

0

] 𝑑𝜃𝑑𝑠.                                     (19) 
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From (13) the right hand side of (19) equals 𝒚(𝒕) and therefore 𝒖(𝒕) = 𝑨−𝒒𝒚(𝒕) and by (18), 𝒖 

is a 𝑪𝟏((𝟎, 𝒂]: 𝑿) solution of (𝟏) − (𝟐). The uniqueness of 𝒖 follows from the uniqueness of the 

solutions of (13) and (𝟏𝟔) − (𝟏𝟕). Hence, the theorem is proved. 
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