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Abstract: A general linear-type time series imitation namely Autoregressive Integrated 

Moving Average (ARIMA) models have played indispensable theoretical and practical role 

in the representation and analysis of time series data. These theoretical and practical 

representations are usually denoted by ARIMA (p, d, q). When d, the differencing operator 

(integrating parameter) is zero the resulting models are also a generalize type called 

Autoregressive Moving Average Models (ARMA). It is of great importance to review 

members of the family of ARIMA because seeing these members at a glance will bring a 

better understanding and correct application of these models to time series data. Thirteen 

members of the family of ARIMA were reviewed in the presence of autocorrelation function.  

Keywords: ARMA; ARIMA; Autocorrelation function; differencing operator 

 

1. Introduction 

It is sometimes a difficult task to see at glance different types of linear time series models in any 

given write-up. Most of the time, the user of such linear time series models will have to consult different 

write-up and gather them to be able to use the right linear-type time series representation for uniformly 

time series data in question. This review attempts to solve this problem, as in when a researcher lays 

hands on this write-up, the researcher will be able to see at a glance the different linear-types time series 
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representation that will be appropriate for the selected study the at hand. The thirteen members of family 

of ARIMA considered in this review are as follows: Moving Average (MA) models, Autoregressive 

(AR) models, ARMA,  Subset Autoregressive (SAR) models, Subset Autoregressive Moving Average 

(SARMA) models, Autoregressive Fractional Incorporated (ARFI) model, Autoregressive Fractional 

Incorporated Moving Average (ARFIMA) models, Subset Autoregressive Fractional (SARFI) models, 

Subset Autoregressive Fractional Incorporated Moving Average (SARFIMA) models, Integrated 

Autoregressive (IAR) models, ARIMA, Subset Integrated Autoregressive (SIAR) models, Subset 

Autoregressive Incorporated Moving Average (SARIMA) models. 

 

2. Mathematical Formulation  

2.1. Auto-Correlation Function 

The assessment of the mean value of the product 
tY and t kY   from their deviations from their 

respective means at time interval “k” unit is called the auto-covariance of lag “k” and is usually denoted 

by cov( , )k t t kY Y   

                          
( , )

( , )
( ) ( )

t t k
t k t

t t k

Cov Y Y
Autocorrelation Y Y
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                                            (1) 

     
0

 k  = k
   

  

The Autocorrelation Function usually denoted by (ACF) do furnish with guide to choose the 

optimal lag and traits associated to a time series. The ACF quantities evaluate the association between 

uniformly recorded time series at distinct distances “k” apart. The function aids to depict the different 

stages in which a time series pass through. It entails set of continuous values usually denoted by k that 

ranges from (-1, +1). 

For preliminary model designation, the ACF function and its partial related function called Partial 

Autocorrelation Function are useful tools, (Shangodoyin and Ojo 2002). A typical example is found in 

the figure 1 below: 
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Figure 1. The graph of ACF and PACF 

 

2.2. Autoregressive (AR) Models 

 

This is correspondent to the form of multiple linear regression generalization of the form: 

0

;i j t j t

j

Z b Y 






   1, ,i n b   

Such that the error term }{ t  is a purely white noise process with mean zero and variance 2

e , then the 

uniformly time varying series  tY is said to follow an autoregressive process of order “p” if it satisfies 

the difference equation: 

        1 1 2 2 ....t t t p t p tY Y Y Y                                       (2)  

where       t   is the random noise Gaussian 

   1 2, ,..., p     is a finite valued coefficient     

    tE Y   

The abbreviation for an autoregressive process of lag “p” is AR (p), which gave forth from the 

fact that 
tY  lies solely on previous or immediate past values of Y and not as explanatory variables. 

In general, the autoregressive process of lag “p” in equation (2) could be expressed as:  

1( ) t tB Y    

where: 

 1 2

1 2( ) 1 ... p
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We can then factorize  

    1 21 1 ,..., 1 pB G B G B G B       .  

(factoring out via Algebraic expression), we have 

     
1 1 11

1 1 1( ) ( ) 1 1 ,..., 1B B G B G B G B
         

By using partial fractions, we have  

)1(
)(

BG

k
B

i

i





    
1 1

1 1 11 1pk G B k G B
 

       where 1, ,i p   

Thus for convergence of )()( 1 BB  , we must have 1B . Therefore, for stationary all the 

roots of the characteristics equation 0)(  B must lie outside the unit circle. 

 

2.2.1. Condition for identifying and fitting of autoregressive process 

The partial autocorrelation graph cut-off at dawdle “p” and the ACF function graph at order “k” 

decay exponentially to zero. (See the figure 1 above) 

 

2.3. Moving Average (MA) Models 

An MA model of lag “q” can be express as:  

         1 1 ....t t t q t qY                                      (3) 

where }{ t  connote the random noise process with  mean zero and variance 
2 . Then  

2

1 2(1 )q

t q tY B B B           

that is, ( )t tY B   where  
2

1 2( ) 1 q

qB B B B               

The characteristic equation of (3) is 0)( B . It can be shown that for any values of 

1 2, ,..., q   , MA(q) is stationary, so no stationary condition is required. But in the expression 

1( )t tB Y    

 we say that  

1 2 1

1 2( ) (1 )q

qB B B B          

                 11
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thus for convergence of )()( 1 BK  , we must have 1B , then it implies that 
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 1iP 1,2,3,...,i q  , where 
1; 1, 2,3,...,iP i q    connote the characteristic equation of the 

roots. Hence, for invertibility condition to be satisfied, the characteristic equation of the roots must lie 

outside the unit circle, that is, 1iP .  

 

2.3.1. Condition for identifying and fitting moving average process 

The autocorrelation graph of order “k” cut-off after a particular lag say q whereas the partial 

autocorrelation graph decay exponentially to zero. Figure 1 above is applicable provided the ACF 

function replaced by the PACF in the table and vice versa. 

 

2.4. Autoregressive Moving Average (ARMA) Model 

 

A more logical extension in representing a linear process is to merge Autoregressive (AR) and 

Moving Average (MA) processes together. Apparently, stationary and non-stationary time series 

processes can be well generalized by ARMA models with parameters within the range of (-1, +1) so as 

to curb the problem parsimony. 

A time series { }tY  is said to follow an autoregressive moving average model of order (p, q) 

(ARMA (p, q )) if it satisfies  

 

               1 1 1 1t t p t p t t q t qY Y Y                                                                  (4) 

( ) ( )t tB Y B    

Such that,  

1( ) 1 ( ) p

pB B B        

1( ) 1 ( ) q

qB B B       

Both stationarity and invertibility condition must be met for the expression in (4). 

 

2.4.1. Condition for identifying and fitting of autoregressive moving average process 

To identify this model neither the ACF nor PACF cuts-off after a particular lag. AR, MA or 

ARMA models were broaden examined and analyzed some authors like (Chatfield, 1980; Walker, 1952; 

Shangodoyin and Ojo, 2002). 

 

2.5. Subset Autoregressive (SAR) Models    

A stochastic process { }tY with zero-mean stationarity generated from an AR process with lag 

“k”, denoted by AR (p), if it satisfies the difference equation 

                    1 1 2 2t t t k t p tY Y Y Y e                   (5) 
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Such that }{ te connote the Gaussian noise process with variance 
2

 . The }{ te will follow a Gaussian 

process, though it can follow any distributional form. Whenever the differential equation of equation (5) 

is fitted to uniformly time varying series { }tY , which incorporate full terms of the past values 

{ ; 1,..., }t iY i k   , it is referred to as full autoregressive model. Full autoregressive model is always 

characterizing by numerous parameterization, which always give rise to over-parameterization. Parable, 

some of these coefficients are sometimes eliminated from the system of equation when they are close to 

zero since they contribute insignificantly to the model. When these parameters are removed the resulting 

model is subset autoregressive (SAR). An appropriate algorithm is used to eliminate lags that are close 

to zero (Ojo et al., 2008). 

 

2.6. Subset Autoregressive Moving Average (SARMA) Models  

This is similar to subset autoregressive (SAR) model described in section 5 above. The difference 

is in the inclusion of error term in the subset autoregressive model. The algorithm is also similar to SAR 

model. Given a full autoregressive moving average model which is optimal at order four for instance, 

the various subset autoregressive moving average having considered the algorithm is given as follows: 

 

1, 2, 3, 4, 12, 13, 14, 23, 24, 34, 123, 124, 134, 234, 1234. 

The equations for the results from the algorithm are: 

1 1 1 1t t t tY a y b e e     

2 2 1 1t t t tY a y b e e     

3 3 1 1t t t tY a y b e e                                                                                       (6) 

. 

. 

.            

1 1 2 2 3 3 4 4 1 1t t t t t t tY a y a y a y a y b e e                                                                  (7) 

Whenever 1=a1, 2=a2, 3=a3, 4=a4, minima model performance of AIC is achieved in (7) and such 

model is called Subset Time Series model (See Ojo, 2007). 

 

2.7. Autoregressive Fractional Integrated and Autoregressive Fractional Integrated Moving Average 

Models (ARFI/ARFIMA) Models        

 

According to Box-Jenkins ARIMA (p, d, q) examination, if the uniformly time-varying series of 

interest is non-stationary, the first order differencing (either by logarithm or 1ty t tY Y    differencing) 
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will behave well in trend provided there is no contamination of seasonal effect. However, it is believed 

that 
ty will speedily experience a decomposing autocorrelations with free-like trend traits, so as to meet 

up the necessary condition of stationary-invertible process. In some highly contaminated time-varying 

series, the first order differencing might not be able to fit because stationarity is not ascertained, that is, 

slow decomposition of the autocorrelation to zero is experienced. In cases where the slow decomposition 

is experienced and non-stationarity was not attained, we used the fractional form of d(-.5,.5) and say 

the stationary uniformly time series { }tY has long memory. 

The process of the Autoregressive Fractionally Incorporated Moving Average (AFRIMA) of lag 

order (p, d, q), is normally captured as ARFIMA (p, d, q). Alternatively, it can be rewritten using what 

is called “d”-operator notation as   

( )(1 ) ( )d

t tB B Y B      

Such that “B” denotes the Backward shift operator; “d” connote the fractional integration index 

Assuming a uniformly time series observation 
tY  with integer “t” as the index, such that

tY are real 

numbers from the real line, then the ARFIMA (p, d, q) model could be generalized via  

( ) ( ) ( )d

t t tB Y B Y B       

Where 

2

1 21 ( )p

pB B B B        ; 

 
2

1 21 ( )q

qB B B B        ; 

1 1 1 1t t p d t p d t t q t qy y y                       

i are the coefficients of the autoregressive process of the ARFIMA (p, d, q) model; j  are the moving 

average process coefficients associated with the error terms ( t ). These error terms are usually subjected 

to  20,t IID  , that is, independent, identically distributed with mean zero and variance 
2  . When 

q=0 in ARFIMA (p, d, q) the resulting equation is resulted to autoregressive fractional integrated model 

(Ojo, 2016). 

For necessity condition of stationary-invertible process of the ARFIMA model, the interval d

(-.5,.5) catered for achieving suitably number of differencing. In a nut shell, the ARFIMA (p, d, q) is 

classified among the long-memory models with slow dying out decomposition of autocorrelations of the 

Box-Jenkins ARMA (p, q) models. It is to be noted that the additional index “d” accommodates and 

captures long-run traits in the observational series, while the Box-Jenkins ARMA (p, q) models capture 

short-run traits. When  0,0.5d  , it is assumed that the ARFIMA model has a long-memory such that 

autocorrelation function decomposes to zero at a rate of hyperbolic; when  0.5,0d   , the ARFIMA 
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process has a long-memory such that autocorrelation function decomposes to zero at a rate of hyperbolic. 

According to Bos, et al. (2008), an ARFIMA processes with  0.5,0d    possessed intermediate-

memory, which could also be referred to as long memory processes. A typical example is shown below    

 

 

Figure 2. Graph of autocorrelation function showing slow decay 

 

2.8. Subset Autoregressive Fractional Integrated and Subset Autoregressive Fractional                    

Incorporated Moving Average Models (SARFI/SARFIMA) Models  

       

ARFIMA model of selected orders can be fitted over an optimal chosen model performance of 

Akaike Information (AIC) that is minima in a pool of AIC. Assuming the order of an ARFIMA model 

is p+d+q with a generalization of  ( ) ( ) ( )d

t t tB Y B B Y     . If the average sum of squares for the 

residual of the model is )1(2ˆ
e such that the minima AIC for the full model equals AIC(1). Having fitted 

the initial full model, a linear combination of best subset model can be achieved via 2k – 1 subset via 

choosing the minima AIC (Sangodoyin and Ojo, 2003).  Let the subset ARFIMA model be 

 

1 1 1 1t n t n nl d t nl d t k t k kq t kqy y y                    

Where 

1 2, ,..., l dn n n  ; k1,….kq are subsets of the integers (1, 2, …, p+d+q).  

Assuming the average sum of squares of residuals is 
)2(2ˆ

e , the 
)2(2ˆ

e  valued AIC at AIC(2) is 

AIC(1)>AIC(2). The generalization with AIC (2) is the fraction part of the ARFIMA model. When “q” 

is zero in the above model, the resulting equation is subset autoregressive fractional integrated model. 

(Ojo and Rufai, 2016). 
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2.9. Integrated Autoregressive Model 

 

Integrated autoregressive models (p, d, 0,) is given as 

( ) ( ) d

t tB Y B Y     

where 
2

1 2( ) 1 p

pB B B B         

1 1t t p d t p d tY Y Y                 (8)  

  

)(B  is the operator function for the autoregressive process that is assumed to have attained 

stationarity, such that its roots lies outside unit circle, that is, 0)( B . ( ) ( )d B B    will be termed 

as the operator of the generalized autoregressive process that is assumed not to have attained stationarity.  

i  are the coefficients of the incorporated autoregressive process part with t  error terms. These error 

terms t  are usually subjected to  20,t IID  , that is, independent, identically distributed with mean 

zero and variance 
2  

 

2.10. Autoregressive Incorporated Moving Average Model 

 

In continuous-type time series generalization, ARIMA model is known to be a full sketch 

generalization of ARMA model. The model is normally fitted to time variant series observations either 

via from the model performance view or forecast point of view. It is usually via the framework of 

ARIMA (p, d, q), where p, d, and p are non-zero positive integers referring to order of autoregressive, 

integrated and moving average processes respectively.  

Assuming a uniformly time-varying observations
tY , where the integer “t” connote the time index 

such that 
tY  are real numbers from the real number line, then the ARIMA (p, d, q) model could be written 

as  

( ) ( ) ( )d

t t tB Y B B Y      

Where 

2

1 21 ( )p

pB B B B        ; 

 
2

1 21 ( )q

qB B B B        ; 

1 1 1 1t t p d t p d t t q t qy y y                                                                 (9) 

 

i are the coefficients of the autoregressive process of the ARFIMA (p, d, q) model; j  are the moving 

average process coefficients associated with the error terms ( t ). These error terms are usually subjected 
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to  20,t IID  , that is, independent, identically distributed with mean zero and variance 2 . 

Autoregressive Integrated (ARI) and ARIMA were extensively studied by (Box and Jenkins, 1970; 

Anderson, 1971, 1977). 

It is to be note that if the autocorrelations fail to tail-off, but rather the autocorrelation values are 

proximity approaches one over many lags, then time series is non-stationary and differencing might be 

needed.  An extremely slow decaying ACF is signal for non-stationarity which can be formally verified 

by unit root tests. 

 

2.11. Subset Integrated Autoregressive and Subset Autoregressive Integrated Moving                                                 

Average Models 

Fitting autoregressive processes and ARIMA models to optimal orders at minima AIC. Assuming 

fully integrated autoregressive model with p+d and autoregressive integrated moving average. With 

p+d+q such that models  

1t t p d t p d tY Y Y          

denoted by IA (p, d) and      

1 1 1 1t t p d t p d t t q t qy Y Y                      

Assuming the average sum of squares of residuals is )2(2ˆ
e , the )2(2ˆ

e  valued AIC at AIC(2) is 

AIC(1)>AIC(2). The generalization with AIC (2) is the fraction part of the ARFIMA model. When q is 

zero in the above model, the resulting equation is subset autoregressive fractional integrated model. 

Let the best fractional part of the Integrated Autoregressive model be 

1 1t m t m ml d t ml d tY Y Y          

where 
1 2, ,..., l dm m m 

 are subsets of the integers (1, 2,…, p+d). AIC(1)>AIC(2) is usually meant for 

average sum of squares residual for 
2(2)ˆ
e . This is the subset integrated autoregressive. Additionally, let 

the best subset autoregressive integrated moving average model be  

1 1 1 1t n t n nl d t nl d t k t k kq t kqY Y Y                    

where 
1 2, ,..., l dn n n 

; k1,….kq are fractional part of the model with integers (1, 2,..., p+d+q).  

)11()22( AICAIC   is usually meant for average sum of squares residual for 
)21(2ˆ

e  (Ojo, 2009). 

3. Conclusions 

In this review, we have been able to note down the members of family of ARIMA model. The 

condition to be fulfilled for us to identify these models have been enumerated. Not only this, when we 
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have data and when we want to fit these models, how the autocorrelation function will behave for us to 

know the appropriate one to fit have been discussed. In a nutshell, seeing these models at a glance and 

the condition to be fulfilled for us to fit these models to the data under study have been achieved.  
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