
Copyright © 2015 by Modern Scientific Press Company, Florida, USA 

 

International Journal of Modern Mathematical Sciences, 2015, 13(4): 366-376 

 

International Journal of Modern Mathematical Sciences 

Journal homepage: www.ModernScientificPress.com/Journals/ijmms.aspx 

ISSN: 2166-286X 

Florida, USA 

Article 

A New Three Parameter Consul Kumaraswamy Distribution 

with Application   

Adil Rashid
*
 and T. R. Jan 

P.G Department of Statistics, University of Kashmir, Srinagar 

* Author to whom correspondence should be addressed; E-Mail: adilstat@gmail.com; 

drtrjan@gmail.com  

Article history: Received 2 August 2015; Received in revised form 8 September 2015, Accepted 20 

September 2015, Published 28 September 2015. 

 

Abstract: In the present paper we construct a new three parameter distribution which is 

obtained by compounding a Consul distribution with Kumaraswamy distribution. The new 

distribution so obtained is known as Consul Kumaraswamy distribution (CKSD) which can be 

nested to different compound distributions. Furthermore, some mathematical properties such as 

factorial moments, mean, variance and coefficient of variation of some compound 

distributions have also been discussed. The estimation of parameters of the proposed 

distribution has been obtained via maximum likelihood estimation method. Finally the 

potentiality of proposed distribution is justified by using it to model the real life data set. 
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1. Introduction 

From the last few decades researchers are busy to obtain new probability distributions by using 

different techniques such as compounding, T-X family, transmutation etc. but compounding of 

probability distribution has received maximum attention which is an innovative and sound technique to 
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obtain new probability distributions.  The compounding of probability distributions enables us to 

obtain both discrete as well as continuous distribution. 

 Compound distribution arises when all or some parameters of a distribution known as parent 

distribution vary according to some probability distribution called the compounding distribution for 

instance negative binomial distribution can be obtained from Poisson distribution when its parameter 

  follows gamma distribution. If the parent distribution is discrete then resultant compound 

distribution will also be discrete and if the parent distribution is continuous then resultant compound 

distribution will also be continuous i,e. the support of the original (parent) distribution  determines the 

support of compound distributions.  

In several research papers it has been found that compound distributions are very flexible and 

can be used efficiently to model different types of data sets. With this in mind many compound 

probability distributions have been constructed. Sankaran [10] obtained a compound of Poisson 

distribution with that of Lindley distribution, Zamani and Ismail constructed a new compound 

distribution by compounding negative binomial with one parameter Lindley distribution that provides 

good fit for count data where the probability at zero has a large value [11]. Researchers like Adil and 

Jan obtained several compound distributions for instance,  a compound of zero truncated generalized 

negative binomial distribution with generalized beta distribution [3], a compound of Geeta distribution 

with generalized beta distribution [4] and compound of Consul distribution with generalized beta 

distribution [5] recently Adil and Jan explored a mixture  of generalized negative binomial distribution 

with that of generalized exponential distribution which contains several compound distributions as its 

sub cases  and  proved that this particular model is better in comparison to others when it comes to fit 

observed count data set [1]. Most recently Adil and Jan constructed a new lifetime distribution and 

some count data models with wide applications in real life [2, 6,7].  

2. Methods  

2.1. Consul Distribution (CD)  

Consul distribution introduced by Consul and Shenton was modified by Islam and Consul 

(1990) who derived it as a bunching model in traffic flow through the branching process and also 

discussed its applications to automobile insurance claims and vehicle bunch size data [8]. 

Suppose a queue is initiated with one member and has traffic intensity with binomial arrivals, 

given by generating function 
mtpptg )1()(   and constant service time. Then the probability that 

exactly x  members will be served before the queue vanishes is given by Consul distribution with 

probability mass function given  
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p
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1

1  .  

Consul distribution reduces to the geometric distribution when 1m  in (1). 

2.2. Kumaraswamy Distribution (KSD) 

Kumaraswamy distribution is a two parameter continuous probability distribution that has 

obtained by Kumaraswamy but unfortunately this distribution is not very popular among statisticians 

because researchers have not analyzed and investigated it systematically in much detail.  Kumaraswmy 

distribution is similar to the beta distribution but unlike beta distribution it has a closed form of 

cumulative distribution function which makes it very simple to deal with. For more detailed properties 

one can see references [9] and Jones [12]. 

A random variable X is said to have a Kumaraswamy distribution (KSD) if its pdf is given by   

     10,1,;
11

2 
 xxxXf

                                                                         (2) 

where 0,  are shape parameters.                                                                                       

In the Consul distribution the parameters m and p are fixed but here we have considered a 

problem in which the parameter 𝑚 is fixed but the probability parameter p  is itself a random variable 

following Kumarasawmy distribution (2), in that case the probability that exactly 𝑥 members will be 

served before the queue vanishes is given by the compound of Consul distribution with 

Kumarasawmy distribution. Here is the definition that will expose the probability function of the 

proposed distribution. 

2.3. Definition of Proposed Distribution 

If a random variable X follows Consul distribution with parameters m and p where the 

parameter m  is fixed but p instead of being a fixed constant is also a random variable following 

Kumarasawamy distribution then determining the distribution that results from marginalizing over p

will be known as a compound of Consul distribution with that of Kumarasawmy distribution.  

Theorem 2.3.1: The probability function of a compound of CD ),( pm  with KSD ),(   is given by 
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where 0,,,...,2,1  mx . 

Proof: With the help of definition of proposed distribution the probability function of a compound of 

CD ),( pm  with KSD ),(   can be obtained as 
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B(·) refers to the beta function defined by B(r, s) =Γ(r)Γ(s)/Γ(r + s), r, s>0 and 0,,,...,2,1  mx  . 

From here a random X variable following a compound of CD with KSD will be symbolized by CKSD

  ,,m . It may be noted here that equation (4) is a valid pmf since it has been obtained by using a 

well-known stochastic compound formula which gives rise to unconditional pmf. 

In the special case if Nm the above probability function takes the simpler rearranged form as 
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where 0,,...,2,1  x  and Nm . Alternatively we can also proceed from (3) as  
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where 0,,,...,2,1  mx . This gives another form of pmf of CKSD   ,,m . 

2.4. Some Nested Distributions of CKSD 
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In this section it will be shown that CKSD can be nested to different compound probability 

distributions for specific parameter setting 

Proposition 2.4.1: If ~X  CKSD   ,,m , then by setting 1m  we obtain compound of geometric 

distribution with Kumaraswamy distribution. 

Proof: Since for 1m in CD we obtain geometric distribution. Hence a compound of geometric 

distribution with Kumaraswmy distribution is followed from (5) by simply substituting 1m in it. 

Therefore we have 
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Where 0,,...,2,1  x

 
Proposition 2.4.2: If ~X  CKSD   ,,m , then by setting 1   we obtain compound of CD 

distribution with uniform distribution.  

Proof: For 1  , Kumaraswamy distribution reduces to uniform distribution. Hence a compound 

of CD with uniform distribution is followed from (5) when we substitute 1  in it. 
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Proposition 2.4.3: If ~X  CKSD   ,,m , then by setting 1 m  we obtain compound of 

geometric distribution with uniform distribution with parameters  

Proof: The proof of the above proposition is followed from (5) by substituting 1 m in it 
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2.5. Factorial Moments 

We hardly emphasize on the necessity and importance of factorial moments in any statistical 

analysis especially in applied work. Some of the important features and characteristics of a distribution 

can be studied through factorial moments (e.g mean, variance, standard deviation etc).In this section 

we obtain factorial moments of some compound distributions through which some of the important 

mathematical properties will also be discussed.  
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by the expression  
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where, 0,,...,2,1  x .  

For 1l in (7) we obtain mean of a compound of GD with KSD 
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Corollary 2.5.2: The factorial moment of order l  of a compound of GD with uniform distribution is 

given by the expression 
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Proof: For 1  , Kumaraswamy distribution reduces to uniform distribution. Therefore the proof 

of the above corollary is followed from (7) when we substitute 1  in it.
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2.6. Parameter Estimation 

In this particular section the estimation of parameters of the proposed distribution will be 

discussed in detail via maximum likelihood estimation method. Let  TNXXX ,..., 21 be a random sample 

from CKSD   ,,m with unknown parameter vector Tm ),,(  . In order to find MLE of the 

proposed distribution we consider its rearranged pmf (5) because of its simple structure as the pmf 
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defined in (4) involves an infinite series that results in too many iterations and therefore unnecessary 

computer time. Hence the log-likelihood function of (5) is given by 
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(8) with respect  andm, respectively gives rise to the following differential equations 
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The above equations are very difficult to solve for analytical solution, therefore ̂,m̂  and ̂ will be 

obtained by maximizing the log likelihood function numerically using Newton-Raphson method in R 

software which is a very powerful technique for solving equations iteratively and numerically. 

 

3. Results and Discussion 

In this section we will explore the applicability of the proposed Consul Kumaraswamy 

distribution by using a real data set on bunching traffic in Australian rural highways which have been 

taken from Taylor et al [13].The data which appears in the first two columns of table 1 gives bunch 

size with observed corresponding frequency and the data which appears in the 3
rd

 and 4
th

 column of 

this table is the fitted CD and proposed CKSD. 

Table 1: Bunch size frequency distribution of Australian rural highways (Taylor et al., 1974) 

Number of                                                    

mites per leaf 

Observed 

Frequency 

Fitted Distribution 

CD CKSD 

1 127 125.42 125.64 

2 53 58.83 59.27 

3 29 29.07 29.60 

4 21 14.84 14.51 

5 5 9.29 6.77 

6 4 









1.21

2.22

4.12

 








5.14

1.14

2.93

 7 1 

8 5 

Total 245 245 245 

Parameter 

Estimation 

 

 

 

 
45.0ˆ

12.1ˆ





p

m
 

95.0ˆ,68.0ˆ

80.0ˆ







m
 

Chi-Square       

Estimate  
5.93 4.12 

DF  3 2 

p-value  0.116 0.127 

 

The proposed distributions fitting graphs of models in table 1 are presented in figs 1 and 2. 
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Fig. 1: Observed frequency fitting of CD model in table 1 

 

Fig. 2: Observed frequency fitting of CKSD model in table 1 

4. Conclusion 

In this paper we have proposed a new three parameter Consul Kumaraswamy distribution by 

using a compounding mechanism. The probability mass function of proposed CKSD has two different 

parameter arrangements one of infinite series and other with a finite series. We have also shown that 

proposed distribution embodies some new compound distributions. Factorial moments of some 

compound distribution have also been discussed. Parameters of the proposed distribution have been 
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obtained by means of maximum likelihood estimation technique. In the end the potentiality of the 

proposed distribution have been tested by fitting it to the real data set and it is quite clear and evident 

from the results that proposed model provides a better fit in comparison to Consul distribution. 
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