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Abstract: A modified version of the generalized Hirota-Satsuma equation is solved 

analytically using Darboux transformations (DT). We start with the Lax pair of this equation 

and apply DT. This leads to another solvable pair containing a new eigenfunction that is a 

solution of the equation. Several seeds solutions are tested as well as one and two solitons 

forms are obtained using DT. A suitable choice of the seed fields leads to new solutions. 

Keywords: Solitons; Hirota-Satsuma equation; Darboux Transformation; exact solutions; 

Singular Manifold method; Lax pair. 

 

 

1. Introduction 

The wave observed in plasma, elastic media, optical fibers, fluid dynamics are described by 

nonlinear partial differential equations. In the past decades, several methods for obtaining analytic 

solutions of nonlinear partial differential equations (NPDEs) have been presented, such as the inverse 

scattering method[1], Hirota's method [2,3], the Backlund transformation [4,5] and Darboux 

transformation [6-10], Painlevé expansions [11], homogenous balance method [12,13], Jacobi elliptic 

function [14, 15], extended tanh-function methods[16-18], extended F-expansion methods [19-20], 

Adomain methods [21], Exp -function methods [22] and finally the Mapping method [23-24] . 

In this paper, we solve using Darboux Transformation method the generalized Hirota–Satsuma 

equation in three dimensions (3D) which described as follows: 

[ℎ𝑥𝑥𝑧 −
3

4
(

ℎ𝑥𝑧
2

ℎ𝑧
) + 3ℎ𝑥ℎ𝑧]

x
= ℎ𝑦𝑧                                                                                                (1) 
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This equation describes the flow of an incompressible fluid. Using the Singular Manifold Method 

(SMM), Estevez et al [31] derive its Lax pair in the form of: 

  −𝜓𝑦 + 𝜓𝑥𝑥𝑥 + 3ℎ𝑥𝜓𝑥 +
3

2
ℎ𝑥𝑥𝜓 = 0                                                                                               (2) 

  2ℎ𝑧𝜓𝑥𝑧 − ℎ𝑥𝑧𝜓𝑧 + 2ℎ𝑧
2𝜓 = 0                                                                                                            (3) 

where h(x,y,t) is the wave amplitude and 𝜓(𝑥, 𝑦, 𝑧)  in the system (2) and (3) is eigenfunction. 

             The present work is organized as follows; section 2, is devoted to the mathematical formulation 

of the problem .We start with an initial solution h and recursively obtain via the system eigenfunctions 

𝜓, 𝜓1 , an improved solution h[1]. Applying DT, N-times, produces N-soliton solutions. In Section 3, we 

explicitly detail, the explicit solitary wave solutions for different seeds form and plot them. In Section 

4, two soliton solutions are derived and plotted, applying the DT method. The paper ends with a 

conclusion, in section 5. 

 

2. Mathematical Formulation 

Darboux transformation is a recursive algorithm; deriving a series of explicit solutions from a 

trivial one.  Applying it to the Lax pair (2) and (3) results in two eigenfunction 𝜓, 𝜓1. These are used 

together, with an initial seed solution h in the following equations; 

𝜓[1] = (
𝑑

𝑑𝑥
−

𝜓′
1

𝜓1
) 𝜓                                                                                                                         (4) 

 ℎ[1] = ℎ[0] +
𝜓′

1

𝜓1
                                                                                                                             (5) 

where 𝜓[1] satisfies (2) and (3) and h[1] is a new solution (one soliton) for equation (1). Replacing for  

𝜓[1]  in (2) and (3) yields: 

−𝜓𝑦[1] + 𝜓𝑥𝑥𝑥[1] + 3ℎ𝑥[1] 𝜓𝑥[1] +
3

2
ℎ𝑥𝑥[1] 𝜓[1] = 0                                                                 (6) 

 2ℎ𝑧[1] 𝜓𝑥𝑧[1] − ℎ𝑥𝑧[1] 𝜓𝑧[1] + 2ℎ𝑧
2[1] 𝜓[1] = 0                                                                           (7) 

Applying DT, once more to get the two solitons solution we have: 

 𝜓[2] = [
𝑑

𝑑𝑥
−

𝜓′
2

[1]

𝜓2[1]
] 𝜓[1]                                                                                                                     (8) 

 ℎ[2] = ℎ[1] +
𝑑

𝑑𝑥
ln 𝜓2[1]                                                                                                                    (9) 

where 𝜓2[1] is defined as: 

𝜓2[1] = [
𝑑

𝑑𝑥
−

𝜓′
1

𝜓1
] 𝜓2                                                                                                                         (10) 

where  𝜓2 is additional solution of (2) and (3) using a different constant of integration. From (8) into 

equations (6) and (7) we obtain: 
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−𝜓𝑦[2] + 𝜓𝑥𝑥𝑥[2] + 3ℎ𝑥[2] 𝜓𝑥[2] +
3

2
ℎ𝑥𝑥[2] 𝜓[2] = 0                                                                  (11) 

2ℎ𝑧[2]𝜓𝑥𝑧[2] − ℎ𝑥𝑧[2]𝜓𝑧[2] + 2ℎ𝑧
2[2] 𝜓[2] = 0                                                                              (12) 

where ℎ[2] is a new solution (two solitons) of equation (1). Applying DT N-time gives the following 

forms for 𝜓[𝑁], ℎ[𝑁]: 

𝜓[𝑁] =
𝑊(𝜓1,𝜓2,…,𝜓𝑁,𝜓)

𝑊(𝜓1,𝜓2,…,𝜓𝑁)
                                                                                                                           (13) 

 ℎ[𝑁] = ℎ[0] +
𝑑

𝑑𝑥
ln 𝑊(𝜓1, 𝜓2, … , 𝜓𝑁)                                                                                                (14) 

where W is the Wronskian of the eigenfunctions;  𝜓1, 𝜓2, … , 𝜓𝑁 , 𝜓 . 

 

3. Solitary Wave Solution (one soliton) 

This section gives a single soliton (solitary wave) solution for both the nonlinear equation (1) 

and its Lax pair (2) and (3). To simplify the solution of this system, we use a simple seed field (h). Some 

seed fields are chosen and the explicit solutions are given below. 

3.1. First Initial (seed) Solution 

Consider an initial wave form: 

 ℎ[0] = 𝑥 + 𝑦 + 𝑧                                                                                                                                       (15) 

Substituting h[0] into equations (2) and (3) gives: 

−𝜓𝑦 + 𝜓𝑥𝑥𝑥 + 3𝜓𝑥 = 0                                                                                                                            (16) 

𝜓𝑥𝑧 + 𝜓 = 0                                                     (17) 

Let in equation (16) the solitary wave solution be; 𝜓(𝑥, 𝑦, 𝑧) = 𝜙(𝜁), where 𝜁 = 𝑥 + 𝑦 +
𝑧

2
      

Thus equation (16) reduces to  

𝜙𝜁𝜁𝜁 + 2𝜙𝜁 = 0, 𝜙 = 𝜙(𝜁)                                                                                                                  (18) 

Integrating with respect to 𝜁 , we obtain:  

𝜙𝜁𝜁 + 2 𝜙 = 𝑐                                                                                        (19) 

where, c is an arbitrary constant of integration. As the boundary conditions for solitary wave are;    

𝜙, 𝜙𝜁 , 𝜙𝜁𝜁 → 0 as 𝜁 → ±∞, thus c =0. Hence the solution of equation (19) will be; 

𝜙(𝜁) = 𝑘1𝑒√2 𝑖𝜁 + 𝑘2𝑒−√2 𝑖𝜁                                                                                                                    (20)      

So, 

𝜙(𝑥, 𝑦, 𝑧) = 𝜓(𝑥, 𝑦, 𝑧) = 𝑘1𝑒𝑖√2(𝑥+𝑦+
1

2
𝑧) + 𝑘2𝑒−𝑖√2(𝑥+𝑦+

1

2
𝑧)                                                          (21) 

The two solutions 𝜓, 𝜓1 of eq. (4) are obtained by choosing 𝑘1 =
1

2
 , 𝑘2 = ∓

1

2
. 



Int. J. Modern Math. Sci. 2016, 14(3): 325- 334 

        

Copyright © 2016 by Modern Scientific Press Company, Florida, USA 

328 

For 𝑘1 =
1

2
 , 𝑘2 =

1

2
  we obtain: 

𝜓(𝑥, 𝑦, 𝑧) = 𝑐𝑜𝑠 (√2(𝑥 + 𝑦 +
1

2
𝑧))                                                            (22)  

For 𝑘1 =
1

2
 , 𝑘2 =

−1

2
  we have: 

𝜓1(𝑥, 𝑦, 𝑧) = 𝑠𝑖𝑛 (√2(𝑥 + 𝑦 +
1

2
𝑧))                                                                        (23)                                                                                                                

and ℎ[1] in (5) reduces to: 

ℎ[1] = 𝑥 + 𝑦 + 𝑧 − √2 𝑡𝑎𝑛 (√2(𝑥 + 𝑦 +
1

2
𝑧))                                                              (24)                                                  

h[1] which is the solitary solution of equation (1). Figure 1 show the solitary wave solution for the non-

linear equation (1) for  𝑧 = 5, 20, 30, 40 

 
a. h[1] for ℎ[0] = 𝑥 + 𝑦 + 𝑧 , z=5                        b. h[1] for ℎ[0] = 𝑥 + 𝑦 + 𝑧 , z = 20 

              

                                 c. h[1] for ℎ[0] = 𝑥 + 𝑦 + 𝑧 , z=30                 d. h[1] for ℎ[0] = 𝑥 + 𝑦 + 𝑧 , z=40 

Fig. 1. Solitary wave solution for equation (1) for different z’s 
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4. Two-Soliton Solution  

To derive a two-soliton solution; h[2], we apply the DT formula for two solitons solution, 

formula (8) and (9) that can be written as ; 

𝜓[2] =
𝑊(𝜓1,𝜓2,𝜓)

𝑊(𝜓1,𝜓2)
                                                                                                                                (25) 

 ℎ[2] = ℎ[0] +
𝑑

𝑑𝑥
ln 𝑊(𝜓1, 𝜓2)  = ℎ[0] + 𝜎 + 𝜎1                                                             (26)                           

where W is the wronskian of three eigenfunctions;  𝜓, 𝜓1, 𝜓2 , while h[0] is the seed solution. This is the 

two-soliton solution. This solution necessitates three eigen-values; (𝜓, 𝜓1, 𝜓2), we assume for 𝜓2 a form 

similar to 𝜓, 𝜓1   

𝜓2(𝑥, 𝑦, 𝑧) = 𝑠𝑖𝑛(𝑥 + 2𝑦 + 𝑧)                                                                                                               (27) 

We then solve the problem for two different seeds values. 

4.1. First Seed Solution 

Replacing for  ℎ[0] = 𝑥 + 𝑦 + 𝑧 in (26) gives two-soliton solution for the nonlinear equation (1) 

with the explicit form; 

ℎ[2] = 𝑥 + 𝑦 + 𝑧 − √2 𝑡𝑎𝑛 (√2 (𝑥 + 𝑦 +
1

2
𝑧)) + 

                 
 −cos (√2(𝑥+𝑦+

1

2
𝑧))2 sin(𝑥+2𝑦+𝑧)+2𝑠𝑖𝑛(𝑥+2𝑦+𝑧)+√2sin (2√2(𝑥+𝑦+

1

2
𝑧))𝑐𝑜𝑠(𝑥+2𝑦+𝑧)

cos (√2(𝑥+𝑦+
1

2
𝑧))2𝑐𝑜𝑠(𝑥+2𝑦+𝑧)+ 1

√2
sin (2√2(𝑥+𝑦+

1

2
𝑧))𝑠𝑖𝑛(𝑥+2𝑦+𝑧)

                          (28) 

This solution is plotted in Fig.2 for initial solution  ℎ[0] = 𝑥 + 𝑦 + 𝑧 

 

                                   a. h[2] for ℎ[0] = 𝑥 + 𝑦 + 𝑧, z=0                   b.  h[2] for ℎ[0] = 𝑥 + 𝑦 + 𝑧, z=0.1 

                                         Fig. 2. Two solitons solution for equation (1)  
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4.2. Second Seed Solution  

Consider initial field of the form  

ℎ[0] =  𝑥𝑦 +
1

𝑧
                                                                                                                                   (29) 

Substituting h[0] from (29) in system (2, 3) reduces it to the form; 

𝜓𝑥𝑧 −
1

𝑧2 𝜓 = 0                                                                                                                    (30) 

𝜓𝑥𝑥𝑥 − 𝜓𝑦 + 3𝑦𝜓𝑥 = 0                                                  (31) 

Solving eq. (30), eq. (31) together gives; 

𝜓1(𝑥, 𝑦, 𝑧) = 0.5𝑒
(𝜆1𝑥+𝜆1

𝟑𝑦+
3

2
𝜆1𝑦2−

1

𝜆1𝑧
)

+ 0.5𝑒
−(𝜆1𝑥+𝜆1

𝟑𝑦+
3

2
𝜆1𝑦2−

1

𝜆1𝑧
)
                  (32) 

We can choose in the same 𝜓2(𝑥, 𝑦, 𝑧) form 

𝜓2(𝑥, 𝑦, 𝑧) = 0.5𝑒
(𝜆2𝑥+𝜆2

𝟑𝑦+
3

2
𝜆2𝑦2−

1

𝜆2𝑧
)

+ 0.5𝑒
−(𝜆2𝑥+𝜆2

𝟑𝑦+
3

2
𝜆2𝑦2−

1

𝜆2𝑧
)
                            (33) 

Using eq. (32), we get; 

σ =
𝜓1′(𝑥,𝑦,𝑧)

𝜓1(𝑥,𝑦,𝑧)
= 𝜆1 tanh (𝜆1𝑥 + 𝜆1

3𝑦 +
3

2
𝜆1𝑦2 −

1

𝜆1𝑧
)                    (34) 

Using eq. (33), we get; 

𝜎1 =
𝜓2

′ [1]

𝜓2[1]
=           

𝜆2
2−𝜆1

2+𝜆2
2 𝑡𝑎𝑛ℎ2 (𝜆2𝑥+𝜆2

𝟑𝑦+
3

2
𝜆2𝑦2−

1

𝜆2𝑧
)

 𝜆2 𝑡𝑎𝑛ℎ(𝜆2𝑥+𝜆2
𝟑𝑦+

3

2
𝜆2𝑦2−

1

𝜆2𝑧
)−𝜆1 𝑡𝑎𝑛ℎ(𝜆1𝑥+𝜆1

𝟑𝑦+
3

2
𝜆1𝑦2−

1

𝜆1𝑧
)

−

                           
𝜆1𝜆2 𝑡𝑎𝑛ℎ(𝜆1𝑥+𝜆1

𝟑𝑦+
3

2
𝜆1𝑦2−

1

𝜆1𝑧
)𝑡𝑎𝑛ℎ(𝜆2𝑥+𝜆2

𝟑𝑦+
3

2
𝜆2𝑦2−

1

𝜆2𝑧
)

𝜆2 𝑡𝑎𝑛ℎ(𝜆2𝑥+𝜆2
𝟑𝑦+

3

2
𝜆2𝑦2−

1

𝜆2𝑧
)−𝜆1 𝑡𝑎𝑛ℎ(𝜆1𝑥+𝜆1

𝟑𝑦+
3

2
𝜆1𝑦2−

1

𝜆1𝑧
)
                                    (35) 

Substituting from eq. (35) and eq. (34) in eq. (26): 

 ℎ[2] = 𝑥𝑦 + (
1

𝑧
) + 𝜆1 𝑡𝑎𝑛ℎ (𝜆1𝑥 + 𝜆1

3𝑦 +
3

2
𝜆1𝑦2 −

1

𝜆1𝑧
)              

               +
𝜆2

2−𝜆1
2+𝜆2

2 𝑡𝑎𝑛ℎ2(𝜆2𝑥+𝜆2
3𝑦+

3

2
𝜆2𝑦2−

1

𝜆2𝑧
)

𝜆2 𝑡𝑎𝑛ℎ(𝜆2𝑥+𝜆2
3𝑦+

3

2
𝜆2𝑦2−

1

𝜆2𝑧
)−𝜆1 𝑡𝑎𝑛ℎ(𝜆1𝑥+𝜆1

3𝑦+
3

2
𝜆1𝑦2−

1

𝜆1𝑧
)
 

              − 
𝜆1𝜆2 𝑡𝑎𝑛ℎ(𝜆1𝑥+𝜆1

3𝑦+
3

2
𝜆1𝑦2−

1

𝜆1𝑧
)𝑡𝑎𝑛ℎ(𝜆2𝑥+𝜆2

3𝑦+
3

2
𝜆2𝑦2−

1

𝜆2𝑧
)

𝜆2 𝑡𝑎𝑛ℎ(𝜆2𝑥+𝜆2
3𝑦+

3

2
𝜆2𝑦2−

1

𝜆2𝑧
)−𝜆1 𝑡𝑎𝑛ℎ(𝜆1𝑥+𝜆1

3𝑦+
3

2
𝜆1𝑦2−

1

𝜆1𝑧
)
                                                 (36)  

This solution is plotted in Fig. 3 for initial solution  ℎ[0] =  𝑥𝑦 +
1

𝑧
  .                                               
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a. h[2] for ℎ[2] 𝑓𝑜𝑟 𝜆1 = 0.5, 𝜆2 = 0.25, 𝑧 = 5         b.  h[2] for 𝜆1 = 0.5, 𝜆2 = 0.25, 𝑧 =10 

 

                     c:  h[2] for 𝜆1 = 1, 𝜆2 = 0.25, 𝑧 = 5      d:  h[2] for 𝜆1 = 1, 𝜆2 = 0.25, 𝑧 = 10 

Fig. 3. Two solitons solution for equation (1) for different vertical distances “z “and similar λ’s 

 

5. Conclusions 

 From this research, we can obtain following conclusions: 

 Form Lax pair (2), (3) a new explicit solutions for Hirota Satsuma equation (1) are detected using 

Darboux transformation.  
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 Test different seed solutions and applying one and two solitons DT, a suitable choice of the seed 

(initial) fields leads to new solutions. 

 This equation is more applicable in the flow of an incompressible fluid. 

 Hirota - Satsuma has no analytical solution before except [25] and the comparison is very difficult 

because the solution in [25] depend on one similarity variable.   
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