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Abstract: This manuscript witnesses a modification in the efficient Galerkin weighted 

residual numerical method is proposed with Chebyshev polynomials as trial functions by 

inserting Meixner’s polynomials instead of the traditional Chebyshev polynomials. The 

modified version which is called the Meixner’s polynomials Method (MPM)is highly 

accurate and is tested on linear and nonlinear integral equations and systems. Couple of 

examples is given to elucidate the solution procedure. Comparison of numerical results 

explicitly reflects the very high level of accuracy. 
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1. Introduction 

Integral equations [1] are useful in describing the various phenomena in disciplines. Many 

problems of mathematical physics can be started in the form of integral equations. These equations also 

occur as reformulations of other mathematical problems such as partial differential equations and 

ordinary differential equations. Therefore, the study of integral equations and methods for solving them 

are very useful in application. In recent years, there has been a growing interest in the Volterra integral 

equations arising in various fields of physics and engineering [2], e.g., potential theory and Dirichlet 
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problems, electrostatics, the particle transport problems of astrophysics and reactor theory, contact 

problems, diffusion problems, and heat transfer problems. 

 𝑢(𝑥) = 𝑓(𝑥) + ∫ 𝐾(𝑥, 𝑡)
𝛽(𝑥)

𝛼(𝑥)
𝑑𝑡,      (1) 

where α(x)  and β(x)  are function in x . Fredholm integral equations [3] arise in many scientific 

applications. It was also shown that Fredholm integral equations can be derived from boundary value 

problems. Erik Ivar Fredholm (1866–1927) is best remembered for his work on integral equations and 

spectral theory. Fredholm was a Swedish mathematician who established the theory of integral equations 

and played a major role in the establishment of operator theory. 

 𝑢(𝑥) = 𝑓(𝑥) + ∫ 𝐾(𝑥, 𝑡)
𝑏

𝑎
𝑑𝑡,      (2) 

where a and b are constants. Similarly, Abel in 1823 investigated the motion of a particle that slides 

down along a smooth unknown curve, in a vertical plane, under the influence of the gravity. The particle 

takes the time f(x) to move from the highest point of the vertical height x to the lowest point 0 on the 

curve. The Abel’s problem is derived to find the equation of that curve. Abel’s integral equation is 

earliest example of an integral equation [4]. Abel’s integral equation has enormous application in applied 

problems including microscopy, seismology, radio astronomy, electron emission, atomic scattering, 

radar ranging, plasma diagnostic, X-rays radiography, fluid mechanics, bio-mechanics, electromagnetic 

theory and optical fiber evaluation, see [5] and references therein. The standard form of integral equation 

is 

 𝑓(𝑥) = ∫
𝑢(𝑡)

(𝑥𝜌−𝑡𝜌)𝛼
𝑑𝑡,

𝑥

0
 x > 0, 0 < α ≤ 1.            (3) 

Recently, there are many approaches developed to find the exact and approximate solutions of 

integral equations, Yousefi et al., used CAS wavelets [6] and Legendre wavelet [7] methods to find the 

solutions of linear and nonlinear Fredholm integral equations, Biazar and Ebrahimi [8] implemented 

Chebyshev wavelets approach for nonlinear systems of Volterra integral equations, Usman et al. 

developed some new algorithms to seek the exact solutions of linear and nonlinear Abel’s integral 

equation [9] and generalized Abel’s integral equations [10], Moreover; In [11], Brunner et al., introduced 

a class of methods depending on some parameters to obtain the numerical solution of Abel integral 

equation of the second kind, Variational iteration method [12], Homotopy perturbation method [13-14] 

and Adomian’s decomposition method [15] are effective and convenient for solving integral equations. 

Kauthen [16] applied linear multistep methods to obtain the numerical solution of a singular nonlinear 

Volterra integral equation. Also Kilbas and Saigo used an asymptotic method [17]to obtain numerically 

the solution of nonlinear Abel–Volterra integral equation. Orsi used a Product Nyström method [18], as 

a numerical method, to obtain the solution of nonlinear Volterra integral equation, Fettis use the Gauss–

Jacobi quadrature rule [19] to determine the a numerical form of the solution of Abel equation, Huang 
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et al. [20] used the Taylor expansion of the unknown function and obtained an approximate solution, 

latter on Piessens and Verbaeten [21] and Piessens [22] uses Chebyshev polynomials to developed an 

approximate solution to Abel equation, Yousefi uses Legendte wavelets [23] presented a numerical 

method for the solution of Abel integral equation. When input signal is with noisy error, Murio et al. 

[24] suggested a stable numerical solution. Furthermore, Garza et al. [25] and Hall et al. [26] used the 

wavelet method to invert the inversion of noisy Abel equation.  

Inspired and motivated by the ongoing research in this area, we present a new, simple approach 

for solving the integral equations including Volterra integral [3], Fredholm integral [3], Integro-

Differential [3], nonlinear Abel’s integral [3], weakly singular [3] and system of Integral [3] equations. 

In the proposed scheme, we use efficient Galerkin weighted residual numerical method is proposed with 

Meixner’s polynomials as trial functions. It is to be highlighted that suggested algorithm is extremely 

simple but highly effective and may be extended to other singular problems of diversified physical 

nature. Moreover, this new scheme is capable of reducing the computational work to a tangible level 

while still maintaining a very high level of accuracy. 

2. Meixner’s polynomials Method (MPM) 

In mathematics Meixner’s polynomials (also called discrete Laguerre polynomial) are a family 

of discrete orthogonal polynomials introduced by Josef Meixner (1934). The recurrence relation is  

 𝑀𝑛(𝑥) = ∑
(−1)𝑘𝑛!

𝑘 !(𝑛−𝑘)!

𝑥!

𝑘!(𝑥−𝑘)

𝑘! г(𝑥−𝛿+1)

г(𝑥−𝛿−𝑛+𝑘+1)
𝑔−𝑘𝑛

𝑘     (4) 

 𝑀0 = 1, 

 𝑀1 =
1

2
𝑥 − 1, 

𝑀2 =
1

4
𝑥2 −

9

4
𝑥 + 2, 

 𝑀3 =
1

8
𝑥3 −

21

8
𝑥2 +

17

2
𝑥 − 6, 

𝑀4 =
1

16
𝑥4 −

19

8
𝑥3 +

299

16
𝑥2 −

323

8 
𝑥 + 24, 

            . 

            . 

            .. 
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Fig. 1. Graphical representation of first five polynomials in [0,1] 

3. Methodology 

Integral Equation of the 1st Kind: Consider the integral equation of the 1st kind is given as 

 𝑓(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝛽(𝑥)

𝛼(𝑥)
, 𝑎 ≤ 𝑥 ≤ 𝑏.      (5) 

where 𝑢(𝑡) is the unknown function, to be determined, K(x, t) , the kernel, is a continuous or 

discontinuous and square integrable function, 𝑓(𝑥) being the known function. Now we use the technique 

of Galerkin method [27], to find an approximate solution  ũ(x) of Eq. (8). For this, we assume that 

 𝑢̃(𝑥) = ∑ 𝑎𝑘𝐾𝑘(𝑥)𝑛
𝑘=0 = 𝑼𝑻𝑲(𝒙),       (6) 

where 𝑈𝑇 = [𝑎0, 𝑎1, 𝑎2, … ]𝑇 , and 𝑉(𝑥) = [𝐾0(𝑥), 𝐾1(𝑥), 𝐾2(𝑥), … ]𝑇 . 

where 𝐾𝑘(𝑥) are Kravchuk polynomials of degree k defined in Eq. (6) and 𝑎𝑘 are unknown parameters, 

to be determined. Substituting Eq. (5) into Eq. (6), we get 

 𝑓(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑼𝑻𝑲(𝒕)𝑑𝑡
𝛽(𝑥)

𝛼(𝑥)
, 𝑎 ≤ 𝑥 ≤ 𝑏.     (7) 

Then the Galerkin equations are obtained by multiplying both sides of Eq. (7) by 𝑲′ = 𝐾𝑗(𝑥), 𝑗 =

0,1,2, … 𝑛, and then integrating with respect to x from a to 𝑏, we have 

 ∫ 𝝓(𝒙)
𝑏

𝑎
𝑑𝑥 = ∫ (∫ 𝐾(𝑥, 𝑡)𝑲(𝒕)𝑲′(𝒕)𝑑𝑡

𝑥

𝑎
)𝑑𝑥,

𝑏

𝑎
     (8) 

where 𝝓(𝒙) =

[
 
 
 
 
𝑓𝐾0

𝑓𝐾1

𝑓𝐾2

⋮
𝑓𝐾𝑛]

 
 
 
 

, 𝑲(𝒕)𝑲′(𝒕) =

[
 
 
 
 
 

𝐾0𝐾0
′ 𝐾1𝐾0

′ 𝐾2𝐾0
′

𝐾0𝐾1
′ 𝐾1𝐾1

′ 𝐾2𝐾1
′

𝐾0𝐾2
′ 𝐾1𝐾2

′ 𝐾2𝐾2
′

…
…
…

𝐾𝑛𝐾0
′

𝐾𝑛𝐾1
′

𝐾𝑛𝐾2
′

⋮ ⋮ ⋮⋱ ⋮
𝐾0𝐾𝑛

′ 𝐾1𝐾𝑛
′ 𝐾0𝐾𝑛

′ … 𝐾𝑛𝐾𝑛
′ ]
 
 
 
 
 

. 

Since in each equation, there are two integrals. The inner integrand of the left side is a function of x, and 

t, and is integrated with respect to t from a to x. As a result the outer integrand becomes a function of 

xonly and integration with respect to x from a to b yields a constant. Thus for each 𝑗 = 0,1,2, … , 𝑛 we 

have a linear equation with 𝑛 + 1 unknowns 𝑎𝑘 , 𝑘 = 0,1,2, … , 𝑛. 
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Finally the Eq. (8) can be rewrite as 

 𝑲𝒌,𝒋 = 𝝌,          (9) 

where 𝑲𝒌,𝒋 = ∫ (∫ 𝐾(𝑥, 𝑡)𝑲(𝒕)𝑲′(𝒕)𝑑𝑡
𝑥

𝑎
)𝑑𝑥,

𝑏

𝑎
 𝑘, 𝑗 = 0,1,2, … 𝑛 

 𝝌 = ∫ 𝑓(𝑥)
𝑏

𝑎
𝐾𝑗(𝑥)𝑑𝑥 = ∫ 𝝓(𝒙)

𝑏

𝑎
𝑑𝑥, 𝑗 = 0,1,2, … 𝑛 

Now the unknown parameters ak are determined by solving the equation (9) and substituting 

these values of parameters in Eq. (6), we get the approximate solution ũ(x) of the integral equation (5). 

Integral Equation of the 2nd Kind: Consider the integral equation of the 2nd kind is 

 𝑓(𝑥) = 𝑐(𝑥)𝑢(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝛽(𝑥)

𝛼(𝑥)
, 𝑎 ≤ 𝑥 ≤ 𝑏.    (10) 

where u(t) is the unknown function, to be determined, k(x, t) , the kernel, is a continuous or 

discontinuous and square integrable function, 𝑓(𝑥)  and 𝑢(𝑥)  being the known function and λ  is a 

constant. Proceeding as before 

 𝑲𝒌,𝒋 = 𝝌,          (11) 

where 𝑲𝒌,𝒋 = 𝑐 ∫ 𝑲(𝒕)𝑲′(𝒕)𝑑𝑥,
𝑏

𝑎
∫ (∫ 𝐾(𝑥, 𝑡)𝑲(𝒕)𝑲′(𝒕)𝑑𝑡

𝑥

𝑎
)𝑑𝑥,

𝑏

𝑎
 𝑘, 𝑗 = 0,1,2, … 𝑛 

 𝝌 = ∫ 𝑓(𝑥)
𝑏

𝑎
𝐾𝑗(𝑥)𝑑𝑥 = ∫ 𝝓(𝒙)

𝑏

𝑎
𝑑𝑥, 𝑗 = 0,1,2, … 𝑛. 

Now the unknown parameters ak are determined by solving the equation (11) and substituting 

these values of parameters in Eq. (6), we get the approximate solution 𝑢̃(𝑥) of the integral equation (5). 

4. Numerical Applications 

In this section, we apply the proposed technique to construct approximate and analytical solutions 

of linear and nonlinear integral equations. Numerical results are very encouraging.  

4.1. Weakly Singular Volterra Integral Equation 

Consider the following weakly singular volterra Integral equation [3] 

 𝑢(𝑥) = 𝑥2 −
128

14
𝑥

9

4 + ∫
1

(𝑥−𝑡)
3
4

𝑢(𝑡)d𝑡.
𝑥

0
      (12) 

The exact solution of Eq. (12) is  𝑢(𝑥) = 𝑥2. 

According to the proposed technique, consider the path solution 

 𝑢(𝑥) = ∑ 𝛼𝑘𝑀𝑘(𝑥)𝑛
𝑘=0 .        (13) 

Consider 2nd order Meixner Polynomials, i.e. for 𝒌 = 𝟐, and we apply the proposed technique to solve 

Eq. (13) with 𝑘 = 2. We have Eq. (13) is 
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 𝑢(𝑥) = ∑ 𝛼𝑘𝑀𝑘(𝑥)2
𝑘=0 = ∑ 𝐶𝑇𝑀(𝑥)2

𝑘=0 ,      (14) 

where 𝐶 = [𝛼0, 𝛼1, 𝛼2]
𝑇 , and 𝑀(𝑥) = [𝑀0, 𝑀1, 𝑀2]

𝑇 . Putting Eq. (14) into Eq. (12), we obtained 

 ∑ 𝑪𝑇𝑴𝑘(𝑥)2
𝑘=0 = 𝑥2 −

128

14
𝑥

9

4 + ∫
1

(𝑥−𝑡)
3
4

∑ 𝑪𝑇𝑴𝑘(𝑡)
2
𝑘=0 d𝑡.

𝑥

0
  (15) 

Multiplying both sides by 𝑅𝑗(𝑥), 𝑗 = 0,1,2. Then integrating over [0,1] we have Eq. (18) is 

 ∫ ∑ 𝑪𝑇𝑴𝑘(𝑥)𝑹𝑗(𝑥)2
𝑘=0

1

0
d𝑥 = ∫ [𝑥2 −

128

14
𝑥

9

4]
1

0
𝑹𝑗(𝑥)d𝑥 

  +∫ [∫
1

(𝑥−𝑡)
3
4

∑ 𝑪𝑇𝑴𝑘(𝑡)
2
𝑘=0 d𝑡

𝑥

0
] 𝑅𝑗(𝑥)d𝑥

1

0
,     (16) 

for 𝑗 = 0,1,2. The matrix form of Eq. (19) is given as  

[

−2.20 1.74
1.56 −1.27

−2.46 6.76
−0.912 −5.15

−175 1.50
−3.98 −3.96

1.348 6.81
6.50 −18.2

] [

𝛼0

𝛼1
𝛼2

𝛼3

] = [

−0.542
0.332

−0.226
0.549

] 

after solving we get  𝛼0 = 10, 𝛼1 = 18, 𝛼2 = 4. Consequently, we have the exact solution is 

𝑢(𝑥) = 𝑥2.This is the exact solution. 

 

 

Fig. 2: Comparison of Exact and Approximate solutions of 𝑢(𝑥) of weakly singular Volterra Integral 

equation using Meixner polynomial of Eq. (12) 

4.2. System of Weakly Singular Integral Equation 

Consider the system of weakly singular integral equation of 1st Kind [3] 

 
16

195
𝑥

5

4(32𝑥2 + 39) +
25

4788
𝑥

9

5(57𝑥2 − 133) = ∫
1

(𝑥−𝑡)
3
4

𝑢(𝑡) +
1

(𝑥−𝑡)
1
5

𝑣(𝑡)d𝑡
𝑥

0
,  (17a) 

 
16

195
𝑥

5

4(32𝑥2 − 39) +
25

4788
𝑥

9

5(57𝑥2 + 133) = ∫
1

(𝑥−𝑡)
1
5

𝑢(𝑡) +
1

(𝑥−𝑡)
3
4

𝑣(𝑡)d𝑡
𝑥

0
. (17b) 

The exact solution of Eq. (17) is  𝑢(𝑥) = 𝑥3 + 𝑥, 𝑣(𝑥) = 𝑥3 − 𝑥.According to the proposed technique, 

consider the trail solution 

 𝑢(𝑥) = ∑ 𝛼𝑘𝑀𝑘(𝑥)𝑛
𝑘=0 , 𝑣(𝑥) = ∑ 𝛽𝑘𝑀𝑘(𝑥)𝑛

𝑘=0 , 
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Table 1: Comparison of the Exact Solution and Approximate Solution of system of weakly singular 

integral equation using Meixner polynomial of Eq. (17) when 𝑘 = 30 

𝑥 u(x) v(x) u(x)_approx. v(x)_approx. Error in u(x) Error in v(x) 

 0.0 2.0000000000 0.0000000000 2.000000000 -0.0000000000 1.7271E-25 1.3162E-26 

 0.1 2.1051709181 -0.1051709181 2.105179181 -0.1051709181 3.7925E-26 1.7021E-28 

 0.2 2.2214027582 -0.2214027582 2.221427582 -0.2214027582 8.3739E-27 1.5451E-26 

 0.3 2.3498588076 -0.3498588076 2.349588076 -0.3498588076 6.4059E-27 1.4846E-26 

 0.4 2.4918246976 -0.4918246976 2.498246976 -0.4918246976 3.4591E-26 1.0179E-26 

 0.5 2.6487212707 -0.6487212707 2.687212707 -0.6487212707 2.3820E-26 3.0721E-26 

 0.6 2.8221188004 -0.8221188004 2.822118804 -0.8221188004 1.1160E-26 9.7581E-27 

 0.7 3.0137527075 -1.0137527075 3.013752075 -1.0137527075 2.6344E-26 1.4123E-26 

 0.8 3.2255409285 -1.2255409285 3.225549285 -1.2255409285 1.3271E-26 8.2910E-29 

 0.9 3.4596031112 -1.4596031112 3.459631112 -1.4596031112 2.3977E-26 2.0262E-26 

 1.0 3.7182818285 -1.7182818285 3.718818285 -1.7182818285 2.3713E-25 3.2704E-25 

 

 

Fig. 3. (a)-(b): Comparison of Exact and Approximate solutions of 𝑢(𝑥) and 𝑣(𝑥) respectively of 

Volterra integral equation of 2nd Kind using Meixner’s Polynomials of Eq. (17) 

4.3. Linear Volterra Integral Equation 

Consider the linear Volterra integral equation [3] 

 𝑢(𝑥) = −2 + 𝑥2 + sin(𝑥) + 2 cos(𝑥) − ∫ (𝑥 − 𝑡)2𝑢(𝑡)d𝑡
𝑥

0
.    (18) 

The exact solution of Eq. (18) is  𝑢(𝑥) = (𝑥 − 𝑡)2.According to the proposed technique, consider the 

trail solution 

 𝑢(𝑥) = ∑ 𝛼𝑘𝑀𝑘(𝑥)𝑛
𝑘=0 .  

Consider 3rd order Meixner’s Polynomials, i.e. for 𝒌 = 𝟑 and we apply the proposed technique 

to solve it tables 2-4 shows the error analysis of exact and approximate solution for 𝒌= 3, 20, 50 

respectively. 
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Table 2: Comparison of the Exact Solution and Approximate Solutions of Volterra integral equation 

using Meixner polynomial of Eq. (18) when 𝒌= 3 

𝑥 Exact Solution Approximate Solution Error 

     0.0 0.000000000000000 0.009300000000000 9.30000E-03 

     0.1 0.099830000000000 0.106600000000000 6.77000E-03 

     0.2 0.198700000000000 0.201300000000000 2.60000E-03 

     0.3 0.295500000000000 0.293500000000000 2.00000E-03 

     0.4 0.389400000000000 0.383400000000000 6.00000E-03 

     0.5 0.479400000000000 0.470500000000000 8.90000E-03 

     0.6 0.564600000000000 0.555200000000000 9.40000E-03 

     0.7 0.644200000000000 0.637200000000000 7.00000E-03 

     0.8 0.717400000000000 0.716700000000000 7.00000E-04 

     0.9 0.783300000000000 0.793800000000000 1.05000E-02 

     1.0 0.841500000000000 0.868000000000000 2.65000E-02 

Table 3: Comparison of the Exact Solution and Approximate Solutions of Volterra integral equation 

using Meixner polynomial of Eq. (18) when 𝒌= 20 

𝑥 Exact Solution Approximate Solution Error 

0.0 0.000000000000000 -0.000000000000000 4.30445E-20 

0.1 0.099833416646828 0.099833416646828 8.20511E-21 

0.2 0.198669330795061 0.198669330795061 9.89853E-21 

0.3 0.295520206661340 0.295520206661340 8.52020E-21 

0.4 0.389418342308650 0.389418342308650 8.61156E-21 

0.5 0.479425538604203 0.479425538604203 9.13538E-21 

0.6 0.564642473395035 0.564642473395035 9.41831E-21 

0.7 0.644217687237691 0.644217687237691 9.70310E-21 

0.8 0.717356090899523 0.717356090899523 1.05778E-20 

0.9 0.783326909627483 0.783326909627483 6.72317E-21 

1.0 0.841470984807897 0.841470984807897 4.56533E-20 

 

 

Fig. 4: Comparison of Exact and Approximate solutions of 𝑢(𝑥) of volterra integral equation using 

Meixner polynomial of Eq. (18) 
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Table 4: Comparison of the Exact Solution and Approximate Solutions of Volterra integral equation 

using Meixner polynomial of Eq. (18) when 𝒌= 50 

𝑥 Exact Solution Approximate Solution Error 

0.0 0.000000000000000 -0.000000000000000 4.30445E-20 

0.1 0.099833416646828 0.099833416646828 8.20511E-21 

0.2 0.198669330795061 0.198669330795061 9.89853E-21 

0.3 0.295520206661340 0.295520206661340 8.52020E-21 

0.4 0.389418342308650 0.389418342308650 8.61156E-21 

0.5 0.479425538604203 0.479425538604203 9.13538E-21 

0.6 0.564642473395035 0.564642473395035 9.41831E-21 

0.7 0.644217687237691 0.644217687237691 9.70310E-21 

0.8 0.717356090899523 0.717356090899523 1.05778E-20 

0.9 0.783326909627483 0.783326909627483 6.72317E-21 

1.0 0.841470984807897 0.841470984807897 4.56533E-20 

 

4.4. System of Volterra Integral Equation 

Consider the system of Volterra integral equation of 2nd kind [3] 

𝑢(𝑥) = 1 − 2𝑥 + sin (𝑥) + ∫ (𝑢(𝑡) + 𝑣(𝑡)),
𝑥

0
     (19a) 

𝑣(𝑥) = 1 − 𝑥2 − sin (𝑥) + ∫ (𝑡𝑢(𝑡) + 𝑡𝑣(𝑡)),
𝑥

0
     (19b) 

The exact solution of Eq. (22) is  𝑢(𝑥) = 1 + sin (𝑥). 𝑣(𝑥) = 1 − sin (𝑥). 

According to the proposed technique, consider the trail solution 

 𝑢(𝑥) = ∑ 𝛼𝑘𝑀𝑘(𝑥)𝑛
𝑘=0 . 𝑣(𝑥) = ∑ 𝛽𝑘𝑀𝑘(𝑥)𝑛

𝑘=0 .  

Consider 2nd order Meixner’s Polynomials, i.e. for 𝒌 = 𝟐, and we apply the proposed technique 

 𝑢(𝑥) = ∑ 𝛼𝑘𝑀𝑘(𝑥)2
𝑘=0 = ∑ 𝑪𝑇𝑴𝑘(𝑥)2

𝑘=0 , 𝑣(𝑥) = ∑ 𝛽𝑘𝑀𝑘(𝑥)2
𝑘=0 = ∑ 𝑫𝑇𝑴𝑘(𝑥)2

𝑘=0 , 

where 𝑪 = [𝛼0, 𝛼1, 𝛼2]
𝑇 , 𝑫 = [𝛽0, 𝛽1, 𝛽2]

𝑇 ,𝑴(𝑥) = [𝑀0, 𝑀1, 𝑀2]
𝑇 . 

 

Tables 5-7 shows the error analysis of exact and approximate solution for 𝒌= 2, 20, 50 respectively. 
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Table 5: Comparison of Exact and Approximate solutions of 𝑢(𝑥) and 𝑣(𝑥) respectively of volterra 

integral equation of 2nd kind using Meixner polynomial of Eq. (22) when 𝒌= 2 

𝑥 u(x) v(x) u(x)_approx. v(x)_approx. Error in u(x) Error in v(x) 

 0.0 1.0000000000 1.000000000 0.9340000000 0.9990000000 6.6000E-02 1.0000E-03 

 0.1 1.1000000000 0.900000000 1.0700000000 0.9000000000 3.0000E-02 0.0000E+00 

 0.2 1.2000000000 0.801000000 1.1900000000 0.8030000000 1.0000E-02 2.0000E-03 

 0.3 1.3000000000 0.704000000 1.3000000000 0.7100000000 0.0000E+00 6.0000E-03 

 0.4 1.3900000000 0.611000000 1.4100000000 0.6190000000 2.0000E-02 8.0000E-03 

 0.5 1.4800000000 0.521000000 1.5000000000 0.5320000000 2.0000E-02 1.1000E-02 

 0.6 1.5600000000 0.435000000 1.5900000000 0.4470000000 3.0000E-02 1.2000E-02 

 0.7 1.6400000000 0.356000000 1.6700000000 0.3660000000 3.0000E-02 1.0000E-02 

 0.8 1.7200000000 0.283000000 1.7300000000 0.2870000000 1.0000E-02 4.0000E-03 

 0.9 1.7800000000 0.21700000 1.7800000000 0.2120000000 0.0000E+00 5.0000E-03 

 1.0 1.8400000000 0.15900000 1.8400000000 0.1390000000 0.0000E+00 2.0000E-02 

 

 

Table 6: Comparison of Exact and Approximate solutions of 𝑢(𝑥) and 𝑣(𝑥) respectively of volterra 

integral equation of 2nd kind using Meixner polynomial of Eq. (19) when 𝒌= 20 

𝑥 u(x) v(x) u(x)_approx. v(x)_approx. Error in u(x) Error in v(x) 

 0.0 1.0000000000 1.0000000000 1.0000000000 1.0000000000 7.4752E-23 9.1892E-21 

 0.1 1.0998334166 0.9001665834 1.0998334166 0.9001665834 3.1510E-23 2.3426E-21 

 0.2 1.1986693308 0.8013306692 1.1986693308 0.8013306692 2.7038E-24 1.0677E-21 

 0.3 1.2955202067 0.7044797933 1.2955202067 0.7044797933 2.0801E-23 1.5343E-22 

 0.4 1.3894183423 0.6105816577 1.3894183423 0.6105816577 2.6255E-23 7.3522E-23 

 0.5 1.4794255386 0.5205744614 1.4794255386 0.5205744614 2.5710E-23 3.5118E-23 

 0.6 1.5646424734 0.4353575266 1.5646424734 0.4353575266 2.4325E-23 3.9200E-24 

 0.7 1.6442176872 0.3557823128 1.6442176872 0.3557823128 3.0840E-23 2.2004E-22 

 0.8 1.7173560909 0.2826439091 1.7173560909 0.2826439091 6.0265E-23 1.1173E-21 

 0.9 1.7833269096 0.2166730904 1.7833269096 0.2166730904 9.0111E-23 2.3182E-21 

 1.0 1.8414709848 0.1585290152 1.8414709848 0.1585290152 4.0095E-22 9.1256E-21 
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Table 7: Comparison of Exact and Approximate solutions of 𝑢(𝑥) and 𝑣(𝑥) respectively of volterra 

integral equation of 2nd kind using Meixner polynomial of Eq. (19) when 𝒌= 50 

𝑥 u(x) v(x) u(x)_approx. v(x)_approx. Error in u(x) Error in v(x) 

 0.0 1.0000000000 1.0000000000 1.0000000000 1.0000000000 2.9524E-46 2.6971E-48 

 0.1 1.0998334166 0.9001665834 1.0998334166 0.9001665834 1.6024E-47 7.0444E-50 

 0.2 1.1986693308 0.8013306692 1.1986693308 0.8013306692 4.4196E-47 5.8193E-49 

 0.3 1.2955202067 0.7044797933 1.2955202067 0.7044797933 3.1770E-47 5.3425E-49 

 0.4 1.3894183423 0.6105816577 1.3894183423 0.6105816577 4.0162E-47 6.1982E-49 

 0.5 1.4794255386 0.5205744614 1.4794255386 0.5205744614 4.7749E-47 5.6567E-49 

 0.6 1.5646424734 0.4353575266 1.5646424734 0.4353575266 4.2471E-47 2.9415E-49 

 0.7 1.6442176872 0.3557823128 1.6442176872 0.3557823128 3.5261E-47 7.1455E-50 

 0.8 1.7173560909 0.2826439091 1.7173560909 0.2826439091 4.9288E-47 2.2560E-49 

 0.9 1.7833269096 0.2166730904 1.7833269096 0.2166730904 1.6410E-47 4.7603E-49 

 10 1.8414709848 0.1585290152 1.8414709848 0.1585290152 3.4279E-46 1.5025E-48 

 

 

Fig. 5 (a)-(b): Comparison of Exact and Approximate solutions of 𝑢(𝑥) and 𝑣(𝑥) respectively of 

volterra integral equation of 2nd kind using Meixner polynomial of Eq. (19) 

4.5. System of Fredholm Integral Equation 

Consider the system of Fredholm integral equation [3] 

 𝑢(𝑥) = (
2−𝜋

2
)𝑥 + 𝑥 tan−1(𝑥) + ∫ (𝑥𝑢(𝑡) − 𝑥𝑣(𝑡)d𝑡)d𝑡

1

−1
.    (20a) 

 𝑣(𝑥) = (
3𝜋−2

6
) + 𝑥 + tan−1(𝑥) + ∫ (𝑡𝑢(𝑡) − 𝑡𝑣(𝑡))d𝑡

1

−1
.     (20b) 

 

The exact solution of Eq. (23) is 𝑢(𝑥) = 𝑥 tan−1(𝑥) , 𝑣(𝑥) = 𝑥 + tan−1(𝑥).According to the 

proposed technique, table 8-10 shows the error analysis of exact and approximate solution for 𝒌= 2, 25, 

50 respectively. 
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Table 8: Comparison of Exact and Approximate solutions of 𝑢(𝑥) and 𝑣(𝑥) respectively of volterra 

integral equation of 2nd kind using Meixner polynomial of Eq. (20) when 𝒌= 2 

𝑥 u(x) v(x) u(x)_approx. v(x)_approx. Error in u(x) Error in v(x) 

 0.0 1.0000000000 1.000000000 0.9340000000 0.9990000000 6.6000E-02 1.0000E-03 

 0.1 1.1000000000 0.900000000 1.0700000000 0.9000000000 3.0000E-02 0.0000E+00 

 0.2 1.2000000000 0.801000000 1.1900000000 0.8030000000 1.0000E-02 2.0000E-03 

 0.3 1.3000000000 0.704000000 1.3000000000 0.7100000000 0.0000E+00 6.0000E-03 

 0.4 1.3900000000 0.611000000 1.4100000000 0.6190000000 2.0000E-02 8.0000E-03 

 0.5 1.4800000000 0.521000000 1.5000000000 0.5320000000 2.0000E-02 1.1000E-02 

 0.6 1.5600000000 0.435000000 1.5900000000 0.4470000000 3.0000E-02 1.2000E-02 

 0.7 1.6400000000 0.356000000 1.6700000000 0.3660000000 3.0000E-02 1.0000E-02 

 0.8 1.7200000000 0.283000000 1.7300000000 0.2870000000 1.0000E-02 4.0000E-03 

 0.9 1.7800000000 0.21700000 1.7800000000 0.2120000000 0.0000E+00 5.0000E-03 

 1.0 1.8400000000 0.15900000 1.8400000000 0.1390000000 0.0000E+00 2.0000E-02 

 

Table 9: Comparison of the Exact Solution and Approximate Solution of Fredholm integral equation of 

2nd Kind using Meixner polynomial of Eq. (20) when 𝒌= 25 

𝑥 u(x) v(x) u(x)_approx. v(x)_approx. Error in u(x) Error in v(x) 

 0.0 0.0000000000 0.0000000000 0.0000000215 -0.000000003 2.1535E-08 3.4755E-10 

 0.1 0.0099668652 0.1996686525 0.0099668613 0.1996686207 3.9236E-09 3.1755E-08 

 0.2 0.0394791120 0.3973955598 0.0394790929 0.3973955744 1.9030E-08 1.4557E-08 

 0.3 0.0874370383 0.5914567945 0.0874370516 0.5914568185 1.3290E-08 2.4014E-08 

 0.4 0.1522025508 0.7805063771 0.1522025604 0.7805063491 9.5783E-09 2.7976E-08 

 0.5 0.2318238045 0.9636476090 0.2318237864 0.9636476057 1.8116E-08 3.3478E-09 

 0.6 0.3242517002 1.1404195003 0.3242517076 1.1404195294 7.4603E-09 2.9169E-08 

 0.7 0.4275081751 1.3107259644 0.4275081804 1.3107259343 5.3322E-09 3.0115E-08 

 0.8 0.5397927538 1.4747409422 0.5397927439 1.4747409636 9.8871E-09 2.1408E-08 

 0.9 0.6595335916 1.6328151018 0.6595335976 1.6328150723 6.0141E-09 2.9489E-08 

 1.0 0.7853981634 1.7853981634 0.7853981559 1.7853980371 7.4669E-09   1.2629E-07 

 

 

Fig. 6 (a)-(b): Comparison of Exact Approximate solutions of 𝑢(𝑥) and 𝑣(𝑥) respectively of Fredholm 

integral equation of 2nd Kind using Meixner polynomial of Eq. (20) 
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Table 10: Comparison of the Exact Solution and Approximate Solution of Fredholm integral equation 

of 2nd Kind using Meixner polynomial of Eq. (20) when 𝒌= 50 

𝑥 u(x) v(x) u(x)_approx. v(x)_approx. Error in u(x) Error in v(x) 

 0.0 0.0000000000 0.0000000000 0.0000000000 0.0000000000 3.2846E-14 4.5468E-15 

 0.1 0.0099668652 0.1996686525 0.0099668652 0.1996686525 3.2364E-14 1.2963E-15 

 0.2 0.0394791120 0.3973955598 0.0394791120 0.3973955598 3.0615E-14 2.1453E-15 

 0.3 0.0874370383 0.5914567945 0.0874370383 0.5914567945 2.6503E-14 5.7789E-15 

 0.4 0.1522025508 0.7805063771 0.1522025508 0.7805063771 1.7855E-14 9.0715E-15 

 0.5 0.2318238045 0.9636476090 0.2318238045 0.9636476090 1.6143E-15 1.0244E-14 

 0.6 0.3242517002 1.1404195003 0.3242517002 1.1404195003 2.2058E-14 5.7631E-15 

 0.7 0.4275081751 1.3107259644 0.4275081751 1.3107259644 3.3121E-14 5.4400E-15 

 0.8 0.5397927538 1.4747409422 0.5397927538 1.4747409422 1.6973E-14 4.3353E-15 

 0.9 0.6595335916 1.6328151018 0.6595335916 1.6328151018 1.6627E-14 2.7885E-15 

 1.0 0.7853981634 1.7853981634 0.7853981634 1.7853981634 1.8494E-13 3.5721E-14 

 

4.6. Mixed Fredholm-Volterra Integral Equation 

Consider the Mixed Volterra-Fredholm integral equation [3] 

 𝑢(𝑥) = −2𝑥 + 𝑥 cos (𝑥) + ∫ 𝑡𝑢(𝑡)d𝑡 + ∫ 𝑥𝑢(𝑡)d𝑡
𝜋

0

𝑥

0
,     (21) 

The exact solution of Eq. (24) is 𝑢(𝑥) = sin (𝑥). According to the proposed technique, table 11-12 shows 

the error analysis of exact and approximate solution for 𝒌= 3, 30 respectively. 

Table 11: Comparison of the Exact Solution and Approximate Solution of Volterra-Fredholm integral 

equation using Meixner polynomial of Eq. (24) 

𝑥 Exact Solution Approximate Solution Error 

     0.0 0.000000000000000 -0.080300000000000 8.03000E-02 

     0.1 0.099830000000000 0.059390000000000 4.04400E-02 

     0.2 0.198700000000000 0.188600000000000 1.01000E-02 

     0.3 0.295500000000000 0.307400000000000 1.19000E-02 

     0.4 0.389400000000000 0.416000000000000 2.66000E-02 

     0.5 0.479400000000000 0.514500000000000 3.51000E-02 

     0.6 0.564600000000000 0.603000000000000 3.84000E-02 

     0.7 0.644200000000000 0.681900000000000 3.77000E-02 

     0.8 0.717400000000000 0.751500000000000 3.41000E-02 

     0.9 0.783300000000000 0.811100000000000 2.78000E-02 

     1.0 0.841500000000000 0.861500000000000 2.00000E-02 
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Table 12: Comparison of the Exact Solution and Approximate Solution of Volterra-Fredholm integral 

equation using Meixner polynomial of Eq. (21) 

𝑥 Exact Solution Approximate Solution Error 

     0.0 0.000000000000000 -0.000000000000000 3.70647E-17 

     0.1 0.099833416646828 0.099833416646828 1.08453E-17 

     0.2 0.198669330795061 0.198669330795061 7.84194E-18 

     0.3 0.295520206661340 0.295520206661340 1.24330E-20 

     0.4 0.389418342308650 0.389418342308650 7.99543E-18 

     0.5 0.479425538604203 0.479425538604203 3.53150E-18 

     0.6 0.564642473395035 0.564642473395035 7.01802E-18 

     0.7 0.644217687237691 0.644217687237691 2.51643E-18 

     0.8 0.717356090899523 0.717356090899523 7.28613E-18 

     0.9 0.783326909627483 0.783326909627483 5.89496E-19 

     1.0 0.841470984807897 0.841470984807897 6.63256E-18 

 

 

Fig. 7: Comparison of Approximate and exact solution of Volterra-Fredholm integral equation using 

Meixner polynomial of Eq. (21) 

4.7. Nonlinear Abel’s Integral Equation 

Consider the nonlinear Abel’s integral equation [3] 

 
3

40
𝑥

2

3(20 − 24𝑥 + 9𝑥2) = ∫
1

(𝑥−𝑡)
1
3

𝑢2(t)d𝑡
𝑥

0
.      (22) 

The exact solution of Eq. (22) is  𝑢(𝑥) = (1 − x).According to the proposed technique, we get the exact 

solution for 𝑘 = 2. 

5. Conclusions 

A proposed technique based on Galerkin weighted residual numerical method is proposed with 

Modified Lommel’s polynomials is developed and applied to obtain exact and approximate solutions of 

linear and nonlinear integral equations. Table 1-3 and Figure 2 and 3 shows the efficiency of the proposed 
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technique, as we increase n, i.e., order of polynomial solution have less error. The proposed algorithm 

is extremely simple, highly effective and is of utmost accuracy. 
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